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Example sheet 2 - Easter 2020

1. Consider the problem

P : minimise 2x1 + 3x2 + 5x3 + 2x4 + 3x5 subject to x1 + x2 + 2x3 + x4 + 3x5 ≥ 4
2x1 − 2x2 + 3x3 + x4 + x5 ≥ 3

x1, x2, x3, x4, x5 ≥ 0.

Write down the dual problem, and solve this graphically. Hence deduce the optimal solution
to the primal problem.

The next four questions refer to Question 12 on example sheet 1.

2. Use the simplex algorithm to solve the linear program in Question 12 on example sheet 1.
Let

A =

 2 1 1 0 0
1 2 0 1 0
1 −1 0 0 1

 , b =

 4
4
1

 , c =


1
1
0
0
0

 .

Choose B = {1, 2, 5} and write Ax = b in the form ABxB + ANxN = b where xB =

(x1, x2, x5)
>, xN = (x3, x4)

> and the matrices AB and AN are constructed appropriately.

Now write c>x = c>BxB + c>NxN and hence write c>x in terms of the matrices AB, AN and
the variables xN (i.e., eliminate xB ).

Compute A−1B and hence calculate the basic solution having B as basis. Write c>x in terms
of the non-basic variables. Prove directly from the formula for c>x that the basic solution
that you have computed is optimal for the problem maximise c>x subject to Ax = b, x ≥ 0.

Compare your answer to your answer to Question 12 on example sheet 1 and confirm that
the final tableau had rows corresponding to the equation xB + A−1B ANxN = A−1B b.

3. Given a vector ε ∈ R3, consider the linear programming problem

Pε : maximise x1 + x2 subject to 2x1 + x2 ≤ 4 + ε1
x1 + 2x2 ≤ 4 + ε2
x1 − x2 ≤ 1 + ε3
x1, x2 ≥ 0

Find a formula in terms of ε for the optimal value for Pε when ‖ε‖ is very small. For what
ranges of values for ε1, ε2, ε3 does your formula hold?

4. Consider the linear program in Question 12 on example sheet 1, but now add the constraint
x1 + 3x2 ≤ 6. Apply the simplex algorithm putting x2 into the basis at the first stage.
Show that the solution at x1 = 0, x2 = 2 is degenerate. Try each of the possibilities for the
variable leaving the basis. Explain, with a diagram, what happens.

5. For ε > 0, let xε = (x1,ε, x2,ε)
> be the optimal solution of the problem to

maximise x1 + x2 + ε
(

log(4− 2x1 − x2) + log(4− x1 − 2x2) + log(1− x1 + x2) + log(x1) + log(x2)
)

subject to 2x1 + x2 < 4, x1 + 2x2 < 4, x1 − x2 < 1, x1, x2 > 0
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Show that 8
3
− 5ε ≤ x1,ε + x2,ε ≤ 8

3
.

6. Apply the simplex algorithm to

P : maximise x1 + 3x2 subject to x1 − 2x2 ≤ 4
−x1 + x2 ≤ 3

x1, x2 ≥ 0.

Explain what happens with the help of a diagram.

7. Two players fight a paint-gun duel: they face each other 2n− 1 paces apart and each has
a single bullet in his gun. At a signal each may fire. If either is hit or if both fire the game
ends; otherwise, both advance one pace and may again fire. The probability of either hitting
his opponent if he fires after the ith pace forward (i = 0, 1, . . . , n−1) is (i + 1) /n. If a player
survives after his opponent has been hit his payoff is +1 and his opponent’s payoff is −1.
The payoff is 0 if neither or both are hit. The guns are silent so that neither knows whether
or not his opponent has fired. Show that, if n = 4, the strategy ‘shoot after taking one step’

is optimal for both, but that if n = 5 a mixed strategy is optimal. [Hint:
(
0, 5

11
, 5
11
, 0, 1

11

)
.]

8. By considering the payoff matrix

A =


0 −2 3 0
2 0 0 −3
−3 0 0 4
0 3 −4 0


show that optimal strategies for a two-person zero-sum game are not necessarily unique.
Find all the optimal strategies.

9. Find optimal strategies for both players and the value of the game which has payoff matrix

A =

(
1 4
3 2

)
.

10. Find a maximal flow and a minimal cut for the network pictured with a source at node
1 and a sink at node n.

11. Devise rules for a version of the Ford–Fulkerson algorithm which works with undirected
arcs.
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12. How would you augment a directed network to incorporate restrictions on node capacity
(the total flow permitted through a node) in maximal-flow problems?

The road network between two towns A and B pictured below. Each road is marked with
an arrow giving the direction of the flow, and a number which represents its capacity. Each
of the nodes of the graph represents a village. The total flow into a village cannot exceed its
capacity (the number in the circle at the node). Obtain the maximal flow from A to B.

The Minister of Transport intends to build a by-pass around one of the villages, whose
effect would be to completely remove the capacity constraint for that village. Which village
should receive the by-pass if the intention is to increase the maximal flow from A to B by as
much as possible? What would the new maximal flow be?

13. Consider a network with 2n + 2 nodes labelled s, a1, . . . , an, b1, . . . , bn, t. Node s is the
source, and node t is the sink. For each i = 1, . . . , n, there is an edge (s, ai) of capacity
1 from the source s to node ai. For each j = 1, . . . , n, there is an edge (bj, t) of capacity
1 from node bj to the sink t. All the other edges of the network are of the form (ai, bj)
for some i, j = 1, . . . , n and have infinite capacity. Finally, suppose that for ever subset
A ⊆ {a1, . . . , an} the number of nodes bj such that there exists an edge (ai, bj) for some
ai ∈ A is greater than or equal to |A|. Prove that the maximal flow has value n. (This is,
essentially, Hall’s marriage theorem.)

14. Sources 1, 2, 3 stock candy floss in amounts of 20, 42, 19 tons respectively. The demand
for candy floss at destinations 1, 2, 3 are 39, 34, 7 tons respectively. The matrix of transport
costs per ton is  7 4 9

8 12 5
3 11 7


with the (i, j) entry corresponding to the route i → j. Find the optimal transportation
scheme and the minimal cost by applying the transportation algorithm starting from (a) an
assignment given by the NW method, and (b) an assignment given by the greedy algorithm.
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