
Optimisation Part IB - Easter 2018

Example Sheet 1
Lecturer: Quentin Berthet

1. Properties of convex sets

a) Show that an intersection of convex sets is a convex set.

b) We recall that a norm N in Rn is a function from Rn to R≥0 such that

- For all v ∈ Rn, and a ∈ R, N(ax) = |a|N(x).

- For all v, w ∈ Rn, N(v + w) ≤ N(v) +N(w) (triangle inequality).

- N(v) = 0 implies v = 0.

Show that the unit ball of any norm is a convex set.

c) Show that a half space, defined for some v ∈ Rn and t ∈ R, by {x ∈ Rn : v>x ≤ t}
is convex. Show that for any A ∈ Rm×n and b ∈ Rm, the set {x ∈ Rn : Ax = b} is
convex. Deduce that the set {x ∈ Rn : Ax = b , x ≥ 0} is convex.

2. Properties of convex functions

a) For a convex set C ⊆ Rn and a function f on C, the epigraph is the set of points
in C ×R “above the graph”, formally defined by {(x, y) ∈ C ×R : y ≥ f(x)}.

Show that a function is convex if and only if its epigraph is convex.

b) The level sets of a real-valued function on a set C are defined, for all t ∈ R, as
{x ∈ C : f(x) ≤ t}. Show that the level sets of a convex function are convex. Is it true
that a function with convex level sets is always convex?

c) Let f1, . . . , fk be convex functions on C and λ1, . . . , λk be nonnegative reals. Show
that the function f defined on C by f(x) = λ1f1(x) + . . .+ λkfk(x) is convex.

d) Show that the supremum of convex functions is a convex function. Show that the
absolute value function, mapping x to |x|, is convex.

e) Let h : R → R and g : C → R be real valued functions, and f = h ◦ g, i.e.
f(x) = h(g(x)). Show that if g is convex and h is convex and nondecreasing, then f is
convex.

f) Let f : Rn → R be a convex function. Show that h : Rm → R defined for
A ∈ Rm×n and b ∈ Rm by h(x) = f(Ax− b) is a convex function.

Remarks or errors can be addressed to q.berthet@statslab.cam.ac.uk
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3. a) Show that if f is a differentiable and convex function, then

f(y) ≥ f(x) +∇f(x)>(y − x) .

Deduce that
(∇f(x)−∇f(y)>(x− y) ≥ 0 .

For a convex function with global minimum x∗, taking y = x∗, what interpretation does
this give about gradient descent?

4. Examples of convex sets and functions.

a) Show that the unit simplex in Rn defined by

{x ∈ Rn x1 + . . .+ xn = 1 , x ≥ 0}

is a convex set. It is the set of all probability distributions on n elements. Show that for
any given function f : [n] → R, the subset of distributions such that Ef(X) ∈ [a, b],
where X ∼ p, is a convex set.

b) Show that the set of semidefinite positive matrices, and the set of positive definite
matrices, are convex sets.

c) Show that the function defined by f(x, y) = x2/y, for y > 0, is convex.

d) Show that the function from symmetric real matrices to R mapping M to its
largest eigenvalue λ1(M) is convex.

5. Properties of smooth and/or strongly convex functions.

a) Show that if f is a β-smooth function, it holds that

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖y − x‖2 .

b) Show that if a function f is twice differentiable, with semidefinite positive Hessian
everywhere, then

- If the eigenvalues of the Hessian are lower bounded by α, then f is α-strongly convex.

- If the eigenvalues of the Hessian are upper bounded by β, then f is β-smooth.

Show that if the eigenvalues of the Hessian of f are in [α, β], the eigenvalues of the
Hessian of f(x)− α‖x‖2/2 are in [0, β − α].

6. Application in statistics and machine learning

We observe, for n properties in a city, the price Yi of the property, and a vector of
variables Xi ∈ Rp of known information about the property (number of rooms, distance
to public transport, rate of crime in the area, etc). We would like to find the vector
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β ∈ Rp that creates the best linear fit X>i β for the price yi. This can be done by taking
the least-squares, which has a statistical motivation

min
β∈Rp

f(β) = min
β∈Rp

n∑
i=1

(yi −X>i β)2

a) Write f(β) using the matrix X ∈ Rn×p with i-th row X>i and of the vector y.

b) Show that f is a convex function.

c) If n > p, and X has rank p, show that f is α-smooth and β-strongly convex, for
α and β depending on the eigenvalues of X>X. In this case, compute explicitly the
minimizer β∗ of f .

d) Compute an iterate of the gradient descent algorithm βt+1, as a function of βt ∈ Rp.
Using a result from the lecture, describe the behaviour of the iterates of this algorithm,
when η = 2/(α + β).

e) What happens when applying Newton’s algorithm to minimize this function? What
is the advantage of using gradient descent rather than this algorithm, or computing
explicitly the minimum?

7. a) Given constants b1, b2 such that b1 − e−b2 ≥ 0 use the Lagrangian method to

maximise 2 tan−1 x1 + x2 subject to x1 + x2 ≤ b1, − lnx2 ≤ b2, x1 ≥ 0, x2 ≥ 0.

[Hint : There will be two cases to check depending the constants b1 and b2.]

b) Given constant b ≥ 0, solve

min
1

x1 + 1
+

1

x2 + 2
such that x1 + x2 = b x1, x2 ≥ 0 .

8. Let g : Rn → Rm and f : Rn → R be convex functions and X be a convex set,
and for every b let

ϕ(b) = inf{f(x) : g(x) ≤ b , x ∈ X}.
Assuming ϕ(b) is finite for all b, show that the function ϕ is convex.

9. We denote by ∆n the unit simplex defined in question 4. For any c ∈ Rn with
distinct entries and α > 0, we consider the optimization problem

min
x∈∆n

c>x+
1

α

n∑
i=1

xi log(xi) .

a) Solve this problem, using the Lagrangian sufficiency theorem or otherwise.

b) Let x∗α be the solution to this problem, find its limit when α goes to 0, and +∞.

c) What is the solution to minx∈∆n c
>x? Compare this result with the question above.


