
Optimisation Michael Tehranchi
Example sheet 2 - Easter 2017

1. Consider the three equations in six unknowns given by Ax = b where

A =

 2 1 1 1 0 0
1 2 3 0 1 0
2 2 1 0 0 1

 , b =

 2
5
6

 .

Choose B = {1, 3, 6} and write Ax = b in the form ABxB + ANxN = b where xB =

(x1, x3, x6)
>, xN = (x2, x4, x5)

> and the matrices AB and AN are constructed appropriately.

Now write c>x = c>BxB + c>NxN and hence write c>x in terms of the matrices AB, AN and
the variables xN (i.e., eliminate xB ).

Compute A−1B and hence calculate the basic solution having B as basis. For c = (3, 1, 3, 0, 0, 0)>

write c>x in terms of the non-basic variables. Prove directly from the formula for c>x that
the basic solution that you have computed is optimal for the problem maximize c>x subject
to Ax = b, x ≥ 0.

Compare your answer to your answer to Question 8 on example sheet 1 and confirm that
the final tableau had rows corresponding to the equation xB + A−1B ANxN = A−1B b.

2. Consider the problem in Question 7 on example sheet 1 and add the constraint x1+3x2 ≤
6. Apply the simplex algorithm putting x2 into the basis at the first stage. Show that the
solution at x1 = 0, x2 = 2 is degenerate. Try each of the possibilities for the variable leaving
the basis. Explain, with a diagram, what happens.

3. Show that introducing slack variables in a linear programming problem does not change
the extreme points of the feasible set by proving that x is an extreme point of the set
{x : Ax ≤ b, x ≥ 0} if and only if

(
x
z

)
is an extreme point of the set{(x

z

)
: Ax + z = b, x ≥ 0, z ≥ 0

}
.

4. Give sufficient conditions for strategies p and q to be optimal for a two-person zero-sum
game with payoff matrix A and value v.

Two players fight a duel: they face each other 2n − 1 paces apart and each has a single
bullet in his gun. At a signal each may fire. If either is hit or if both fire the game ends;
otherwise, both advance one pace and may again fire. The probability of either hitting his
opponent if he fires after the ith pace forward (i = 0, 1, . . . , n − 1) is (i + 1) /n. If a player
survives after his opponent has been hit his payoff is +1 and his opponent’s payoff is −1.
The payoff is 0 if neither or both are hit. The guns are silent so that neither knows whether
or not his opponent has fired. Show that, if n = 4, the strategy ‘shoot after taking one step’

is optimal for both, but that if n = 5 a mixed strategy is optimal. [Hint:
(
0, 5

11
, 5
11
, 0, 1

11

)
.]

5. By considering the payoff matrix

A =


0 −2 3 0
2 0 0 −3
−3 0 0 4
0 3 −4 0


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show that optimal strategies for a two-person zero-sum game are not necessarily unique.
Find all the optimal strategies.

6. The n× n matrix of a two-person zero-sum game is such that the row and column sums
all equal s. Show that the game has value s/n. [Hint: Guess a solution and show that it is
optimal.]

7. Find optimal strategies for both players and the value of the game which has payoff matrix

A =

(
1 4
3 2

)
.

8. Find a maximal flow and a minimal cut for the network pictured with a source at node
1 and a sink at node n.

9. Devise rules for a version of the Ford–Fulkerson algorithm which works with undirected
arcs.

As a consequence of a drought, an emergency water supply must be pumped from Oxbridge
to Camford along the network of pipes pictured below. The numbers against the pipes show
their maximal capacities, and each pipe may be used in either direction. Find the maximal
flow and prove that it is maximal.
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10. How would you augment a directed network to incorporate restrictions on node capacity
(the total flow permitted through a node) in maximal-flow problems?

The road network between two towns A and B pictured below. Each road is marked with
an arrow giving the direction of the flow, and a number which represents its capacity. Each
of the nodes of the graph represents a village. The total flow into a village cannot exceed its
capacity (the number in the circle at the node). Obtain the maximal flow from A to B.

The Minister of Transport intends to build a by-pass around one of the villages, whose
effect would be to completely remove the capacity constraint for that village. Which village
should receive the by-pass if the intention is to increase the maximal flow from A to B by as
much as possible? What would the new maximal flow be?

11. Consider a network with 2n + 2 nodes labelled s, a1, . . . , an, b1, . . . , bn, t. Node s is the
source, and node t is the sink. For each i = 1, . . . , n, there is an edge (s, ai) of capacity
1 from the source s to node ai. For each j = 1, . . . , n, there is an edge (bj, t) of capacity
1 from node bj to the sink t. All the other edges of the network are of the form (ai, bj)
for some i, j = 1, . . . , n and have infinite capacity. Finally, suppose that for ever subset
A ⊆ {a1, . . . , an} the number of nodes bj such that there exists an edge (ai, bj) for some
ai ∈ A is greater than or equal to |A|. Prove that the maximal flow has value n. (This is,
essentially, Hall’s marriage theorem.)

12. Sources 1, 2, 3 stock candy floss in amounts of 20, 42, 19 tons respectively. The demand
for candy floss at destinations 1, 2, 3 are 39, 34, 7 tons respectively. The matrix of transport
costs per ton is  7 4 9

8 12 5
3 11 7


with the (i, j) entry corresponding to the route i → j. Find the optimal transportation
scheme and the minimal cost by applying the transportation algorithm starting from (a) an
assignment given by the NW method, and (b) an assignment given by the greedy algorithm.
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