Optimisation Michael Tehranchi
Example sheet 1 - Easter 2017

1. Given constants p > 1 and aq, ..., a,, use the Lagrangian method to

n n
maximise E a;z; subject to E |z; P < 1.
i1 i—1

2. Given constants by, by such that b; — e~ > 0 use the Lagrangian method to
maximise 2tan"! z; + subject to x1 + 292 < by, —Inaxy < by, 1 >0, 29 > 0.
[Hint: There will be two cases to check depending the constants b; and bs.]

3. Given non-negative constants pi,...,p, and ¢,...,q, and 0 < « < 1, consider the
problem to

n n
maximise szwi subject to Z gri < a, 0<z; <1 for all 7.
i=1 i=1
Show that the feasible vector x* € R™ is optimal if there exists a \* > 0 such that
0 D iy BTy = a,
o if p; > ¢;A\* then z} =1,
o if p; < g;A* then z7 = 0.

)

4. Let g : R” — R be convex. Show that for all real b the set {z : g(x) < b} is convex.
Suppose f: R" — R is convex, and for every b let

¢(b) = nf{f(z) : g(z) < b},
Assuming ¢(b) is finite for all b, show that the function ¢ is convex.

5. Consider the following problems:
(a !

) minimise ¢
b) minimise ¢’z subject to Az < b;

x subject to Ax = b;

(

(c) minimise ¢'z subject to Az = b, x > 0;

(d) minimise ¢’z subject to Az < b, z > 0.
In each case

(i) find the set A of values for the Lagrange multipliers A for which the Lagrangian has a
finite minimum (subject to the appropriate regional constraint, if any);

(ii) for each value of A € A calculate the minimum of the Lagrangian and write down the
dual problem;

(iii) write down the necessary and sufficient conditions for optimality;

(iv) verify that the dual of the dual is the primal problem.

6. Suppose that a linear programming problem is written in the two equivalent forms
minimise ¢'z subject to Az <b, x>0,

where A is an m X n matrix, ¢, x € R™; and

minimise cjxe subject to A.x.=0b, . >0,
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where, after the addition of slack variables and the extension of the matrix A and vector ¢
in the appropriate way, A, is m X (n +m), and ¢, x. € R"™™. Use your answers to the
previous question to write down the dual problem to both versions of the problem and show
that the dual problems are equivalent to each other.

7. Consider the (primal) linear programming problem

P : maximise x1 + x5 subject to 2z +xzy < 4
r1+2x, < 4

Tr1 — T2 S 1

T, T2 2 0

(i) Solve P graphically in the x;-z5 plane.

(i) Introduce slack variables z3, x4 x5 and write the problem in equality form. How many
basic solutions of the constraints are there? Determine the values of z = (x1, ... ,xg,)T and
of the objective function at each of the basic solutions. Which of the basic solutions are
feasible? Are all the basic solutions non-degenerate?

(iii) Write down the dual problem in inequality form with variables A;, Ay and A3; add slack
variables A; and A5 and determine the values of A = (A1, ..., ;)" and of the dual objective
function at each of the basic solutions to the dual. Which of these are feasible for the dual?

(iv) Show that for each basic solution = to the problem P there is exactly one basic solution
A to the dual giving the same values of the primal and dual objective functions and satisfying
complementary slackness (A\jz;12 =0,7=1,2,3 and 2;\;13 =0, j = 1,2). For how many of
these matched pairs (x, \) is x feasible for the primal problem and \ feasible for the dual?
(v) Solve the problem P using the simplex algorithm starting with the initial basic feasible
solution 1 = x5 = 0. Try both choices of the variable to introduce into the basis on the first
step. Compare the objective rows of the various tableaux generated with appropriate basic
solutions of the dual problem. What do you observe?

8. Use the simplex algorithm to solve

P : maximise 3r1 + x9+ 3x3 subject to 2014+ a0+ w3 < 2
T+ 21‘2 + 31’3 S 5

201 + 229+ x3 < 6

Ti, To, x3 > 0,

Each row of the final tableau is the sum of scalar multiples of the rows of the initial tableau.
Explain how to determine the scalar multipliers directly from the final tableau.

Let P(e) be the linear programming problem when the right-hand side b = (2,5, 6)T is
replaced by the perturbed vector b(e) = (24 €1,5 + €2,6 + 63)T. Give a formula, in terms

of € = (€1, €2, €3) ', for the optimal value for P(e) when the ¢; are small. For what ranges of
values for €1, €5, €3 does your formula hold?

9. Apply the simplex algorithm to

P : maximise x; + 3z5 subject to T — 229 < 4
—X1+ Zo S 3
xy, o = 0.

Explain what happens with the help of a diagram.
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10. Use the two-phase algorithm to solve:

maximise — 2x; — 2xy subject to 201 — 229 < 1
51’1 + 31‘2 Z 3
xi, o > 0.

[Hint: You should get z; = %, Ty = %. Note that it is possible to choose the first pivot
column so that Phase I lasts only one step, but this requires a different choice of pivot column

than the one specified by the usual rule-of-thumb.]
11. Use the two-phase algorithm to solve:

minimise 13z + bxe — 1223 subject to 201+ o+ 223 < B
3ZL‘1 + 31‘2 + T3 Z 7

1+ 5x9+ 4z3 = 10

Ty1,T2,T3 > 0.

12. Consider the problem

minimise 2xq + 3xs + dxs + 2x4 + 3x5 subject to rT1+ To+ 223+ w4435 > 4
2$1—2£C2+3$3+ T4+ s > 3
X1, T2, T3, T4, Ty 2 0

Write down the dual problem, and solve this graphically. Hence deduce the optimal solution
to the primal problem.



