
Optimisation Michael Tehranchi
Example sheet 1 - Easter 2017

1. Given constants p > 1 and a1, . . . , an, use the Lagrangian method to

maximise
n∑

i=1

aixi subject to
n∑

i=1

|xi|p ≤ 1.

2. Given constants b1, b2 such that b1 − e−b2 ≥ 0 use the Lagrangian method to

maximise 2 tan−1 x1 + x2 subject to x1 + x2 ≤ b1, − lnx2 ≤ b2, x1 ≥ 0, x2 ≥ 0.

[Hint : There will be two cases to check depending the constants b1 and b2.]

3. Given non-negative constants p1, . . . , pn and q1, . . . , qn and 0 < α < 1, consider the
problem to

maximise
n∑

i=1

pixi subject to
n∑

i=1

qixi ≤ α, 0 ≤ xi ≤ 1 for all i.

Show that the feasible vector x∗ ∈ Rn is optimal if there exists a λ∗ ≥ 0 such that
◦
∑n

i=1 qix
∗
i = α,

◦ if pi > qiλ
∗ then x∗i = 1,

◦ if pi < qiλ
∗ then x∗i = 0.

4. Let g : Rn → R be convex. Show that for all real b the set {x : g(x) ≤ b} is convex.
Suppose f : Rn → R is convex, and for every b let

φ(b) = inf{f(x) : g(x) ≤ b}.
Assuming φ(b) is finite for all b, show that the function φ is convex.

5. Consider the following problems:

(a) minimise c>x subject to Ax = b;

(b) minimise c>x subject to Ax ≤ b;

(c) minimise c>x subject to Ax = b, x ≥ 0;

(d) minimise c>x subject to Ax ≤ b, x ≥ 0.

In each case

(i) find the set Λ of values for the Lagrange multipliers λ for which the Lagrangian has a
finite minimum (subject to the appropriate regional constraint, if any);

(ii) for each value of λ ∈ Λ calculate the minimum of the Lagrangian and write down the
dual problem;

(iii) write down the necessary and sufficient conditions for optimality;

(iv) verify that the dual of the dual is the primal problem.

6. Suppose that a linear programming problem is written in the two equivalent forms

minimise c>x subject to Ax ≤ b, x ≥ 0,

where A is an m× n matrix, c, x ∈ Rn; and

minimise c>e xe subject to Aexe = b, xe ≥ 0,
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where, after the addition of slack variables and the extension of the matrix A and vector c
in the appropriate way, Ae is m × (n + m), and ce, xe ∈ Rn+m. Use your answers to the
previous question to write down the dual problem to both versions of the problem and show
that the dual problems are equivalent to each other.

7. Consider the (primal) linear programming problem

P : maximise x1 + x2 subject to 2x1 + x2 ≤ 4
x1 + 2x2 ≤ 4
x1 − x2 ≤ 1
x1, x2 ≥ 0

(i) Solve P graphically in the x1-x2 plane.

(ii) Introduce slack variables x3, x4 x5 and write the problem in equality form. How many

basic solutions of the constraints are there? Determine the values of x = (x1, . . . , x5)
> and

of the objective function at each of the basic solutions. Which of the basic solutions are
feasible? Are all the basic solutions non-degenerate?

(iii) Write down the dual problem in inequality form with variables λ1, λ2 and λ3; add slack

variables λ4 and λ5 and determine the values of λ = (λ1, . . . , λ5)
> and of the dual objective

function at each of the basic solutions to the dual. Which of these are feasible for the dual?

(iv) Show that for each basic solution x to the problem P there is exactly one basic solution
λ to the dual giving the same values of the primal and dual objective functions and satisfying
complementary slackness (λixi+2 = 0, i = 1, 2, 3 and xjλj+3 = 0, j = 1, 2). For how many of
these matched pairs (x, λ) is x feasible for the primal problem and λ feasible for the dual?

(v) Solve the problem P using the simplex algorithm starting with the initial basic feasible
solution x1 = x2 = 0. Try both choices of the variable to introduce into the basis on the first
step. Compare the objective rows of the various tableaux generated with appropriate basic
solutions of the dual problem. What do you observe?

8. Use the simplex algorithm to solve

P : maximise 3x1 + x2 + 3x3 subject to 2x1 + x2 + x3 ≤ 2
x1 + 2x2 + 3x3 ≤ 5

2x1 + 2x2 + x3 ≤ 6
x1, x2, x3 ≥ 0,

Each row of the final tableau is the sum of scalar multiples of the rows of the initial tableau.
Explain how to determine the scalar multipliers directly from the final tableau.

Let P (ε) be the linear programming problem when the right-hand side b = (2, 5, 6)> is

replaced by the perturbed vector b(ε) = (2 + ε1, 5 + ε2, 6 + ε3)
>. Give a formula, in terms

of ε = (ε1, ε2, ε3)
>, for the optimal value for P (ε) when the εi are small. For what ranges of

values for ε1, ε2, ε3 does your formula hold?

9. Apply the simplex algorithm to

P : maximise x1 + 3x2 subject to x1 − 2x2 ≤ 4
−x1 + x2 ≤ 3

x1, x2 ≥ 0.

Explain what happens with the help of a diagram.
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10. Use the two-phase algorithm to solve:

maximise − 2x1 − 2x2 subject to 2x1 − 2x2 ≤ 1
5x1 + 3x2 ≥ 3

x1, x2 ≥ 0.

[Hint: You should get x1 = 9
16

, x2 = 1
16

. Note that it is possible to choose the first pivot
column so that Phase I lasts only one step, but this requires a different choice of pivot column
than the one specified by the usual rule-of-thumb.]

11. Use the two-phase algorithm to solve:

minimise 13x1 + 5x2 − 12x3 subject to 2x1 + x2 + 2x3 ≤ 5
3x1 + 3x2 + x3 ≥ 7
x1 + 5x2 + 4x3 = 10

x1, x2, x3 ≥ 0.

12. Consider the problem

minimise 2x1 + 3x2 + 5x3 + 2x4 + 3x5 subject to x1 + x2 + 2x3 + x4 + 3x5 ≥ 4
2x1 − 2x2 + 3x3 + x4 + x5 ≥ 3

x1, x2, x3, x4, x5 ≥ 0.

Write down the dual problem, and solve this graphically. Hence deduce the optimal solution
to the primal problem.
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