
Optimization Michael Tehranchi/DPK
Example sheet 2 - Easter 2008

16. Consider the three equations in six unknowns given by Ax = b where

A =

 2 1 1 1 0 0
1 2 3 0 1 0
2 2 1 0 0 1

 , b =

 2
5
6

 .

Choose B = {1, 3, 6} and write Ax = b in the form ABxB + ANxN = b where xB =

(x1, x3, x6)
T, xN = (x2, x4, x5)

T and the matrices AB and AN are constructed appropriately.

Now write cTx = cT
BxB + cT

NxN and hence write cTx in terms of the matrices AB, AN and
the variables xN (i.e., eliminate xB ).

Compute A−1
B and hence calculate the basic solution having B as basis. For c = (3, 1, 3, 0, 0, 0)T

write cTx in terms of the non-basic variables. Prove directly from the formula for cTx that
the basic solution that you have computed is optimal for the problem maximize cTx subject
to Ax = b, x ≥ 0.

Compare your answer to your answer to Question 11 and confirm that the final tableau
had rows corresponding to the equation xB + A−1

B ANxN = A−1
B b. Why is it not fair to say

that the simplex algorithm is just a complicated way to invert a matrix?

17. Consider the problem in Question 10 and add the constraint x1 + 3x2 ≤ 6. Apply the
simplex algorithm putting x2 into the basis at the first stage. Show that the solution at
x1 = 0, x2 = 2 is degenerate. Try each of the possibilities for the variable leaving the basis.
Explain, with a diagram, what happens.

18. In the previous example the additional constraint was redundant (it did not change the
feasible set). Can degeneracy occur without redundant equations?

19. Show that introducing slack variables in a linear programming problem does not change
the extreme points of the feasible set by proving that x is an extreme point of the set
{x : Ax ≤ b, x ≥ 0} if and only if

(
x
z

)
is an extreme point of the set{(x

z

)
: Ax + z = b, x ≥ 0, z ≥ 0

}
.

20. Give sufficient conditions for strategies p and q to be optimal for a two-person zero-sum
game with payoff matrix A and value v.

Two players fight a duel: they face each other 2n − 1 paces apart and each has a single
bullet in his gun. At a signal each may fire. If either is hit or if both fire the game ends;
otherwise, both advance one pace and may again fire. The probability of either hitting his
opponent if he fires after the ith pace forward (i = 0, 1, . . . , n − 1) is (i + 1) /n. If a player
survives after his opponent has been hit his payoff is +1 and his opponent’s payoff is −1.
The payoff is 0 if neither or both are hit. The guns are silent so that neither knows whether
or not his opponent has fired. Show that, if n = 4, the strategy ‘shoot after taking one step’

is optimal for both, but that if n = 5 a mixed strategy is optimal. [Hint:
(
0, 5

11
, 5

11
, 0, 1

11

)
.]
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21. By considering the payoff matrix

A =


0 −2 3 0
2 0 0 −3
−3 0 0 4
0 3 −4 0


show that optimal strategies for a two-person zero-sum game are not necessarily unique.
Find all the optimal strategies.

22. The n×n matrix of a two-person zero-sum game is such that the row and column sums
all equal s. Show that the game has value s/n. [Hint: Guess a solution and show that it is
optimal.]

23. Find optimal strategies for both players and the value of the game which has payoff
matrix

A =

(
1 4
3 2

)
.

[You may like to try to compare the effort required to solve this by

(1) seeking strategies and a value which satisfy the optimality conditions;
(2) direct solution of Player I’s original minimax problem; and
(3) using the simplex method on one of the player’s problems after transforming it as

suggested in lectures.]

24. Find a maximal flow and a minimal cut for the network pictured with a source at node
1 and a sink at node n.

25. Devise rules for a version of the Ford–Fulkerson algorithm which works with undirected
arcs.

As a consequence of a drought, an emergency water supply must be pumped from Oxbridge
to Camford along the network of pipes pictured below. The numbers against the pipes show
their maximal capacities, and each pipe may be used in either direction. Find the maximal
flow and prove that it is maximal.
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26. How would you augment a directed network to incorporate restrictions on node capacity
(the total flow permitted through a node) in maximal-flow problems?

The road network between two towns A and B pictured below. Each road is marked with
an arrow giving the direction of the flow, and a number which represents its capacity. Each
of the nodes of the graph represents a village. The total flow into a village cannot exceed its
capacity (the number in the circle at the node). Obtain the maximal flow from A to B.

The Minister of Transport intends to build a by-pass around one of the villages, whose
effect would be to completely remove the capacity constraint for that village. Which village
should receive the by-pass if the intention is to increase the maximal flow from A to B by as
much as possible? What would the new maximal flow be?

27. By finding a suitable potential on the nodes of the network in the figure (i.e., a set of
suitable node numbers), show that the flow illustrated below is a minimal-cost circulation.
[Each arc is labelled with the flow, xij, and with a triple of numbers giving the constants
(c−ij, c

+
ij, dij) for that arc.]

28. Consider the problem of assigning lecturers L1, . . . , Ln to courses C1, . . . , Cn so as to
minimize student dissatisfaction. The dissatisfaction felt by students if lecturer Li gives
course Cj is dij, and each lecturer must give exactly one course. Show how to formulate this
problem as a problem of minimizing the cost of a circulation in a network. (Can you be sure
that your network problem has an optimal flow of the appropriate kind?)
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For the example of 3 lecturers and 3 courses with dissatisfaction matrix 6 3 1
8 12 5
3 11 7


find an optimal flow through the appropriate network (by guessing) and compute node
numbers for each node so that the optimality conditions are satisfied.

29. Sources 1, 2, 3 stock candy floss in amounts of 20, 42, 19 tons respectively. The demand
for candy floss at destinations 1, 2, 3 are 39, 34, 7 tons respectively. The matrix of transport
costs per ton is  7 4 9

8 12 5
3 11 7


with the (i, j) entry corresponding to the route i → j. Find the optimal transportation
scheme and the minimal cost by applying the transportation algorithm starting from (a) an
assignment given by the NW method, and (b) an assignment given by the greedy algorithm.
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