
Optimization Michael Tehranchi/DPK
Example sheet 1 - Easter 2008

1. Minimize each of the following functions in the region specified.

(i) 3x in {x : x ≥ 0}; (ii) x2 − 2x + 3 in {x : x ≥ 0}; (iii) x2 + 2x + 3 in {x : x ≥ 0}.
For each of the following functions specify the set Λ of λ values for which the function has

a finite minimum in the region specified, and for each λ ∈ Λ find the minimum value and
(all) optimal x.

(iv) λx subject to x ≥ 0; (v) λx subject to x ∈ R; (vi) λ1x
2 + λ2x subject to x ∈ R;

(vii) λ1x
2 + λ2x subject to x ≥ 0; (viii) (λ1 − λ2)x subject to 0 ≤ x ≤ M .

2. Minimize xTV x subject to µTx = m where V is a symmetric, positive definite n × n
matrix, and µ ∈ Rn is a fixed vector.

[Suppose an investor can choose from among n stock. If

• xi = the number of shares of stock i the investor holds,
• µi = the mean return on stock i, and
• Vij = the covariance between the returns of stock i and stock j,

then the problem amounts to minimizing the variance of the portfolio subject to a given
mean return m. Markowitz was awarded the Nobel Prize in Economics in 1990 in part for
his analysis of this problem.]

3. Maximize n1 log p1 + . . . + nk log pk subject to p1 + . . . + pk = 1, p1, . . . , pk > 0, where
n1, . . . , nk are positive constants. [The optimal (p1, . . . , pk) is the maximum likelihood esti-
mator for the multinomial distribution.]

4. For a probability measure P on a finite set S, the entropy of P is defined as

H(P) = −
∑
i∈S

pi log pi,

where pi = P{i} and 0 log 0 = 0 by convention. Find the maximum and the minimum values
of H(P).

5. Maximize 2 tan−1 x1 + x2 subject to x1 + x2 ≤ b1, − ln x2 ≤ b2, x1 ≥ 0, x2 ≥ 0,
where b1, b2 are constants such that b1 − e−b2 ≥ 0.

6. Let S be a finite sample space, and let P and Q be two probability measures on S.
Consider the problem

maximize Q(A) subject to P(A) ≤ α.

What is the dual problem? [This problem is related to the Neyman–Pearson lemma in
statistics.]
Hint: Let pi = P{i} and qi = Q{i} for each i ∈ S. Then the problem can be reformulated as

maximize
∑
i∈S

qixi subject to
∑
i∈S

pixi ≤ α, xi ∈ {0, 1}
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7. Show that the quadratic programs

P : minimize
1

2
xTQx + cTx subject to x ≥ b

and

D : maximize − 1

2
yTQ−1y − bTy + bTc subject to y ≤ c

are dual problems, where Q is a symmetric, positive definite n× n matrix and b, c ∈ Rn.

8. Consider the following problems:

(a) minimize cTx subject to Ax = b;

(b) minimize cTx subject to Ax ≤ b;

(c) minimize cTx subject to Ax = b, x ≥ 0;

(d) minimize cTx subject to Ax ≤ b, x ≥ 0.

In each case

(i) find the set Λ of values for the Lagrange multipliers λ for which the Lagrangian has a
finite minimum (subject to the appropriate regional constraint, if any);

(ii) for each value of λ ∈ Λ calculate the minimum of the Lagrangian and write down the
dual problem;

(iii) write down the necessary and sufficient conditions for optimality;

(iv) verify that the dual of the dual is the primal problem.

9. Suppose that a linear programming problem is written in the two equivalent forms

minimize cTx subject to Ax ≤ b, x ≥ 0,

where A is an m× n matrix, c, x ∈ Rn; and

minimize cT
e xe subject to Aexe = b, xe ≥ 0,

where, after the addition of slack variables and the extension of the matrix A and vector c
in the appropriate way, Ae is m × (n + m), and ce, xe ∈ Rn+m. Use your answers to the
previous question to write down the dual problem to both versions of the problem and show
that the dual problems are equivalent to each other.

10. Consider the (primal) linear programming problem

P : maximize x1 + x2 subject to 2x1 + x2 ≤ 4
x1 + 2x2 ≤ 4
x1 − x2 ≤ 1
x1, x2 ≥ 0

(i) Solve P graphically in the x1-x2 plane.

(ii) Introduce slack variables x3, x4 x5 and write the problem in equality form. How many

basic solutions of the constraints are there? Determine the values of x = (x1, . . . , x5)
T and

of the objective function at each of the basic solutions. Which of the basic solutions are
feasible? Are all the basic solutions non-degenerate?
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(iii) Write down the dual problem in inequality form with variables λ1, λ2 and λ3; add slack

variables λ4 and λ5 and determine the values of λ = (λ1, . . . , λ5)
T and of the dual objective

function at each of the basic solutions to the dual. Which of these are feasible for the dual?

(iv) Show that for each basic solution x to the problem P there is exactly one basic solution
λ to the dual giving the same values of the primal and dual objective functions and satisfying
complementary slackness (λixi+2 = 0, i = 1, 2, 3 and xjλj+3 = 0, j = 1, 2). For how many of
these matched pairs (x, λ) is x feasible for the primal problem and λ feasible for the dual?

(v) Solve the problem P using the simplex algorithm starting with the initial basic feasible
solution x1 = x2 = 0. Try both choices of the variable to introduce into the basis on the first
step. Compare the objective rows of the various tableaux generated with appropriate basic
solutions of the dual problem. What do you observe?

11. Use the simplex algorithm to solve

P : maximize 3x1 + x2 + 3x3 subject to 2x1 + x2 + x3 ≤ 2
x1 + 2x2 + 3x3 ≤ 5

2x1 + 2x2 + x3 ≤ 6
x1, x2, x3 ≥ 0,

Each row of the final tableau is the sum of scalar multiples of the rows of the initial tableau.
Explain how to determine the scalar multipliers directly from the final tableau.

Let P (ε) be the linear programming problem when the right-hand side b = (2, 5, 6)T is

replaced by the perturbed vector b(ε) = (2 + ε1, 5 + ε2, 6 + ε3)
T. Give a formula, in terms

of ε = (ε1, ε2, ε3)
T, for the optimal value for P (ε) when the εi are small. For what ranges of

values for ε1, ε2, ε3 does your formula hold?

12. Apply the simplex algorithm to

P : maximize x1 + 3x2 subject to x1 − 2x2 ≤ 4
−x1 + x2 ≤ 3

x1, x2 ≥ 0.

Explain what happens with the help of a diagram.

13. Use the two-phase algorithm to solve:

maximize − 2x1 − 2x2 subject to 2x1 − 2x2 ≤ 1
5x1 + 3x2 ≥ 3

x1, x2 ≥ 0.

[Hint: You should get x1 = 9
16

, x2 = 1
16

. Note that it is possible to choose the first pivot
column so that Phase I lasts only one step, but this requires a different choice of pivot column
than the one specified by the usual rule-of-thumb.]
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14. Use the two-phase algorithm to solve:

minimize 13x1 + 5x2 − 12x3 subject to 2x1 + x2 + 2x3 ≤ 5
3x1 + 3x2 + x3 ≥ 7
x1 + 5x2 + 4x3 = 10

x1, x2, x3 ≥ 0.

15. Consider the problem

minimize 2x1 + 3x2 + 5x3 + 2x4 + 3x5 subject to x1 + x2 + 2x3 + x4 + 3x5 ≥ 4
2x1 − 2x2 + 3x3 + x4 + x5 ≥ 3

x1, x2, x3, x4, x5 ≥ 0.

Write down the dual problem, and solve this graphically. Hence deduce the optimal solution
to the primal problem.
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