METRIC AND TOPOLOGICAL SPACES, SHEET II: 2019

- 1. Let $A \subset \mathbb{R}^n$ be a non-compact subset. Show that there exists a continuous function on A which is not bounded.
- 2. Show that the product of two connected spaces is connected.
- 3. Show that a continuous function $f:[0,1] \to [0,1]$ has a fixed point.
- 4. Let X be a topological space and $A \subset X$ a connected subspace of X. If K is a subspace containing A and contained in the closure of A, i.e. $A \subset K \subset \operatorname{cl}(A)$, prove that K is connected.
- 5. Let X and Y be topological spaces and $f: X \to Y$ be a continuous bijection. Prove that if X is compact and Y is Hausdorff, then f is a homeomorphism. Give an examples to show that the Hausdorff condition is necessary.
- 6. Prove that there is no continuous injective map $f: \mathbb{R}^2 \to \mathbb{R}$.
- 7. Let X be a compact Hausdorff spaces with disjoint closed subspaces C_1 and C_2 . Show there exist disjoint open sets U_1 and U_2 such that $C_i \subset U_i$.
- 8. A topological space is called *arc connected* if for any two points $a, b \in X$ there exists a continuous path

$$f: [0,1] \to X$$

connecting a and b such that f is a homeomorphism onto its image. Give an example of path connected space that is not arc connected. (\star) Sketch an argument showing that path connected open subsets of \mathbb{R}^n are arc connected.

- 9. Is there is Hausdorff topology τ on [0,1] which is weaker than the usual topology? Weaker here means that every open set in τ is an open set in τ_{Euc} , but there are Euclidean open sets that do not lie in τ .
- 10. Give an example of a sequence of closed and connected subsets $C_n \subset \mathbb{R}^2$ such that $C_n \supset C_{n+1}$, but the intersection $\bigcap_{n=1}^{\infty}$ is not connected.
- 11. Let X be a topological space. Define the one-point compactification as follows. Let X^+ be the set underlying X and an additional point ∞ . Define a topology on X^+ whose open sets $U \subset X^+$ are of one of the following two forms.
 - U is contained in $X \subset X^+$, and is open.
 - \bullet U is obtained as

$$U = (X \setminus C) \cup \{\infty\},\$$

where C is compact and closed in X.

Prove that X^+ is a topological space and that it is always compact.

12. Describe the one-point compactification of \mathbb{R} and \mathbb{R}^2 .

Dhruv Ranganathan, dr508@cam.ac.uk

- 13. Let C[0,1] be the set of continuous \mathbb{R} -valued functions on [0,1]. Equip C[0,1] with a the supremum metric d_{∞} , described in the previous example sheet. Prove that the unit ball in C[0,1] is *not* compact.
- 14. Let (X,d) be a compact metric space and $f: X \to X$ a continuous map. If f preserves distances, i.e. d(x,y) = d(f(x),f(y)) for all $x,y \in X$, show that f is a homeomorphism. Can the compactness hypothesis be dropped?
- 15. (\star) Sketch an argument to show that the loop space of the sphere is connected, but the loop space of the 2-dimensional torus is not.