pmhw@dpmms.cam.ac.uk

Example Sheet 1

(1) Show that the sequence $2012, 20012, 20012, \ldots$ converges in the 5-adic topology on Z.

(2) Let (\mathbf{R}^n, d) denote Euclidean *n*-space. If P, Q, R are points in \mathbf{R}^n such that

$$d(P,Q) + d(Q,R) = d(P,R),$$

show that Q is on the line segment PR. [You may assume that equality holds in the Cauchy–Schwarz inequality $(\sum_{i=1}^{n} x_i y_i)^2 \leq (\sum_{i=1}^{n} x_i^2)(\sum_{j=1}^{n} y_j^2)$ if and only if the vectors **x** and **y** are proportional.]

(3) If (X_1, ρ_1) , (X_2, ρ_2) are metric spaces, show that we may define a metric ρ on the set $X_1 \times X_2$ by

$$\rho((x_1, x_2), (y_1, y_2)) = \rho_1(x_1, y_1) + \rho_2(x_2, y_2).$$

Show moreover that the projection maps onto the two factors are continuous maps.

Suppose now (X_i, ρ_i) are metric spaces for $i = 1, 2, \ldots$ Let X be the set of all sequences (x_i) with $x_i \in X_i$ for all i; show that we may define a metric $\tilde{\rho}$ on X by

$$\tilde{\rho}((x_n), (y_n)) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\rho_n(x_n, y_n)}{1 + \rho_n(x_n, y_n)}$$

(4) Consider the following subsets $A \subset \mathbf{R}^2$, and determine whether they are open, closed or neither.

(a) $A = \{(x, y) : x < 0\} \cup \{(x, y) : x > 0, y > 1/x\};$ (b) $A = \{(x, \sin(1/x)) : x > 0\} \cup \{(0, y) : -1 \le y \le 1\};$ (c) $A = \{(x, y) : y \in \mathbf{Q}, y = x^n \text{ for some positive integer } n\}.$

(5) Let $Y = \{0\} \cup \{1/n : n = 1, 2, ...\} \subset \mathbf{R}$ with the standard metric. For (X, d) any metric space, show that the continuous maps $f : Y \to X$ correspond precisely to the convergent sequences $x_n \to x$ in X.

(6) Suppose $F \subset X$ is a subset of a metric space (X, ρ) ; define a distance function $\rho(x, F)$ and show that it is continuous in x. Show that F is closed if and only if $\rho(x, F) > 0$ for all $x \notin F$. Given disjoint closed sets F_1, F_2 in X, prove that there exist open subsets U_1, U_2 of X with $U_1 \cap U_2 = \emptyset$, $F_1 \subset U_1$ and $F_2 \subset U_2$. (7) Describe all convergent sequences (x_n) for \mathbf{R}^2 equipped with the 'British Rail metric' (as described in lectures).

(8) Show that the interior of a (non-degenerate) convex polygon in \mathbf{R}^2 is homeomorphic to the open unit disc in \mathbf{R}^2 , which in turn is homeomorphic to the Euclidean plane \mathbf{R}^2 . *Is the statement still true if we omit the condition convex?

(9) Let d_1, d_2, d_∞ be the metrics on \mathbf{R}^n given by $d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n |x_i - y_i|$, $d_2(\mathbf{x}, \mathbf{y}) = [\sum_{i=1}^n (x_i - y_i)^2]^{1/2}$ and $d_\infty(\mathbf{x}, \mathbf{y}) = \sup_i |x_i - y_i|$. For any $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$, show that

 $d_1(\mathbf{x}, \mathbf{y}) \ge d_2(\mathbf{x}, \mathbf{y}) \ge d_\infty(\mathbf{x}, \mathbf{y}) \ge d_2(\mathbf{x}, \mathbf{y}) / \sqrt{n} \ge d_1(\mathbf{x}, \mathbf{y}) / n.$

Deduce that the metrics are topologically equivalent (i.e. give rise to the same metric topology on \mathbb{R}^n).

(10) Let d_1, d_2, d_∞ be the metrics on C[0, 1] given by $d_1(f, g) = \int_0^1 |f - g|$, $d_2(f, g) = [\int_0^1 (f - g)^2]^{1/2}$ and $d_\infty(f, g) = \sup_{x \in [0,1]} |f(x) - g(x)|$. Show that the corresponding metric topologies on C[0, 1] are distinct.

(11) Let A be a subset of a topological space (X, τ) . Prove that

$$\operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int} A))) = \operatorname{Cl}(\operatorname{Int} A)).$$

*Find a subset $A \subset \mathbf{R}$ for which the operations of taking successive interiors and closures yield precisely seven distinct sets (including A itself).

(12) Let A be a subset of a topological space; show that Cl(A) is just the set of accumulation points for A.

(13) Show that the standard metric topology on \mathbb{R}^n has a countable base of open sets. Give an example of a metric topology on \mathbb{R}^n for which this is not true.

(14) Let $f, g: X \to Y$ be two continuous maps, where X is any topological space and Y is a Hausdorff topological space. Prove that $W = \{x \in X : f(x) = g(x)\}$ is a closed subspace of X. Deduce that the set of fixed points of a continuous map of a Hausdorff topological space to itself is a closed subset.

(15) Let $\mathbf{T} = \{z \in \mathbf{C} : |z| = 1|\}$ be the unit circle, with subspace topology induced from the usual topology on \mathbf{C} . We define an equivalence relation \sim on \mathbf{R} by $x \sim y$ if $x - y \in \mathbf{Z}$. Prove that \mathbf{T} is homeomorphic to \mathbf{R} / \sim with the quotient topology. (16) Suppose that (X_i, ρ_i) = (**R**, d) for i = 1, 2, ..., where d denotes the Euclidean metric, and that $\tilde{\rho}$ denotes the metric defined in Question 3 on the set X of real sequences. Let $Y \subset X$ be the subset of sequences (x_n) with $x_n = 0$ for $n \gg 0$. Show that (a) we may define a metric ρ' on Y by $\rho'((x_n), (y_n)) = \sum_{n=1}^{\infty} d(x_n, y_n)$, and

(b) the subspace topology on Y (induced from the $\tilde{\rho}$ -metric topology on X) is different from the ρ' -metric topology on Y.

(17) Let P_1, \ldots, P_N be distinct points in \mathbf{R}^2 with $A = \{P_1, \ldots, P_N\}$ and $X = \mathbf{R}^2/A$, the space where the whole set A is identified to a point. Show that X is a metric space by giving an explicit description of a metric which induces the quotient topology (the usual choice is sometimes known as the 'London Underground metric').

(18) Consider the two dimensional torus $X = \mathbf{R}^2 / \sim$, where $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 - x_2$ and $y_1 - y_2$ are both integers. Show that X is a metric space, by giving an explicit description of a metric inducing the quotient topology. Let $L \subset \mathbf{R}^2$ be the line $y = \alpha x$ for some $\alpha \in \mathbf{R}$; show that there is a continuous map $\phi : L \to X$, and determine when the image of ϕ is a closed subset of X.

 $(19)^*$ Let A be an uncountable set and $X = \{0,1\}^A := \{f : A \to \{0,1\}\}$. For B a countable subset of A and $g : B \to \{0,1\}$, let

$$U_{B,g} := \{ f : A \to \{0,1\} : f(\alpha) = g(\alpha) \text{ for } \alpha \in B \}$$

Show that the collection of all such subsets of X form a base for a topology on X. Let

 $Y := \{f : A \to \{0, 1\} : f(\alpha) = 0 \text{ for all but countably many } \alpha \in A\} \subset X.$

For any sequence $(g_n) \in Y$ such that $g_n \to g \in X$, show that $g \in Y$. Show however that Y is dense in X, and so in particular Y is not closed.

(20)* Suppose $p \neq 2$ is prime number. Choose $a \in \mathbb{Z}$ which is not a square and not divisible by p. Suppose $x^2 \equiv a \pmod{p}$ has a solution x_0 . Show that there exists x_1 such that $x_1 \equiv x_0 \pmod{p}$ and $x_1^2 \equiv a \pmod{p^2}$, and iteratively that there is an x_n such that $x_n \equiv x_{n-1} \pmod{p^n}$ and $x_n^2 \equiv a \pmod{p^{n+1}}$. Show that (x_n) is a Cauchy sequence in (\mathbf{Q}, d_p) , where d_p denotes the p-adic metric on \mathbf{Q} , and deduce that (\mathbf{Q}, d_p) is not complete.