

EXAMPLE SHEET 1

1. Give an example of a metric space X which has a closed ball of radius 1.001 which contains 100 *disjoint* closed balls of radius one.
2. Show that the sequence 2008, 20008, 200008, 2000008, ... converges in the 5-adic metric.
3. Suppose that $\mathbb{R} \times \mathbb{R}$ is endowed with one of the product metrics defined in lectures (pick your favourite). Show that the map $f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x, y) = x + y$ is continuous.
4. Suppose that (X, d) is a metric space and that $X \times X$ is endowed with the product metric $\tilde{d}((x, x'), (y, y')) = d(x, y) + d(x', y')$. Show that the metric d , viewed as a map from $X \times X$ to \mathbb{R} , is continuous.
5. By a *norm* on \mathbb{R}^n we mean a function $\|\cdot\| : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ for which $\|x\| = 0$ if and only if $x = 0$, for which $\|x + y\| \leq \|x\| + \|y\|$, and such that $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{R}$. Show that any norm defines a metric on \mathbb{R}^n by the rule $d(x, y) = \|x - y\|$. Suppose now that $(X_1, d_1), \dots, (X_n, d_n)$ are metric spaces. Wikipedia says that the function \tilde{d} defined by

$$\tilde{d}((x_1, x_2, \dots, x_n), (x'_1, x'_2, \dots, x'_n)) = \|(d_1(x_1, x'_1), \dots, d_n(x_n, x'_n))\|$$

is a metric on $X_1 \times \dots \times X_n$. Do you believe this?¹

6. Suppose that $(X_1, d_1), (X_2, d_2), \dots$ are metric spaces. Prove the claim made in lectures, that

$$\tilde{d}((x_1, x_2, \dots), (x'_1, x'_2, \dots)) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i, x'_i)}{1 + d_i(x_i, x'_i)}$$

defines a metric on the countably infinite product $\prod_{i=1}^{\infty} X_i$.

7. How many topologies are there on the set $\{1, 2\}$? Show that if $n > 1$ then there are at least 2^n different topologies on the set $\{1, \dots, n\}$. Is the number of topologies on $\{1, \dots, n\}$ bounded above by C^n , for some universal constant C ?
8. Give an example of an infinite topological space X which is homeomorphic to $X \times X$.
9. Exhibit a countable basis for the usual topology on \mathbb{R} .

10. Suppose that $C[0, 1]$ is endowed with the L^2 -metric $d(f, g) = \sqrt{\int_0^1 |f(x) - g(x)|^2 dx}$. Is it complete?

¹Update: I am pleased to report that next year's example sheet will see "says" replaced by "said".

11. Which of the following pairs of topological spaces are homeomorphic? Justify your answers. [Hint: I'm not sure all of this can be done using material from the first six lectures of the course.]

- (i) A coffee mug and a doughnut;
- (ii) $C[0, 1]$ and $C[0, 2]$ (both with the metric $d(f, g) = \max |f(x) - g(x)|$);
- (iii) $(0, 1)$ and $[0, 1]$;
- (iv) $\{0, 1, \dots, 9\}^{\mathbb{N}}$ and $[0, 1]$;
- (v) $\mathbb{R}^2 \setminus \{0\}$ and $\mathbb{R}^2 \setminus \{x : |x| \leq 1\}$.

12. Is \mathbb{Q} complete in the 2-adic metric?

13. For this question we work in \mathbb{R}^n with the Euclidean metric. Show that there do not exist two disjoint closed unit balls inside any closed ball of radius 2. Show that there do, however, exist $(1 + c)^n$ disjoint closed unit balls inside any closed ball of radius 3.001, for some absolute constant $c > 0$. Do there exist exponentially many disjoint closed unit balls inside a closed ball of radius 2.001?

14. Suppose that A is a set inside some topological space X . Show that no more than 14 distinct sets may be obtained from A by repeated applications of the closure and complementation operations (e.g. “the closure of the complement of the closure of the closure of the complement of the complement of A ”). Show furthermore that 14 is the best possible constant in this result.

15. Show that the set $S \subseteq C[0, 1]$ consisting of continuous functions which map \mathbb{Q} to \mathbb{Q} is dense, where the metric on $C[0, 1]$ is defined by $d(f, g) = \max |f(x) - g(x)|$.

Version of October 12th, 2008.

Please email corrections and comments to b.j.green@dpmms.cam.ac.uk.