Metric & Topological Spaces, sheet 2: (2006)

- 1. Which of the following subspaces of \mathbb{R}^2 are (a) connected (b) path-connected? $B_t(x,y)$ denotes the open t-disc about $(x,y) \in \mathbb{R}^2$ and $\overline{X} = cl(X)$ denotes closure.
 - (i) $B_1(1,0) \cup B_1(-1,0)$;
 - (ii) $\overline{B_1(1,0)} \cup \overline{B_1(-1,0)}$
 - (iii) $B_1(1,0) \cup \overline{B_1(-1,0)}$
 - (iv) $\{(x,y) | x = 0 \text{ or } y/x \in \mathbb{Q} \}.$
- 2. Show the product of two connected spaces is connected.
- 3. Is \mathbb{C} , with the Zariski topology (open sets are complements of finite sets, and the empty set), connected?
- 4. Prove there is no continuous injection $\mathbb{R}^2 \to \mathbb{R}$.
- 5. Let $Z = \{0, 1\}$ denote the two-point set with the discrete topology. Prove that a topological space X is connected if and only if every continuous function $\lambda : X \to Z$ is constant. Deduce that every path-connected space is connected.
 - It is a fact that a connected open subset U of the plane \mathbb{R}^2 is path-connected. Is this true without the assumption that U be open?
- 6. Let X be a topological space and $H \subset X$ a connected subset. Prove that cl(H) is connected.
- 7. (a) Let $\phi:[0,1]\to[0,1]$ be continuous. Prove (using connectedness) that ϕ has a fixed point.
 - (b) Let $\mathbb{S}^1 \subset \mathbb{R}^2$ denote the unit circle in the Euclidean plane (with the subspace topology) and let $f: \mathbb{S}^1 \to \mathbb{R}$ be continuous. Prove there is some $x \in \mathbb{S}^1$ such that f(x) = f(-x).
- 8. Suppose $f:[0,1]\to\mathbb{R}$ is continuous and has f(0)=f(1). For each integer $n\geq 2$ show there is some x s.t. $f(x)=f(x+\frac{1}{n})$.
- 9. (i) Give an example of a sequence of closed connected subsets $C_n \subset \mathbb{R}^2$ s.t. $C_n \supset C_{n+1}$ but $\bigcap_{n=1}^{\infty} C_n$ not connected.
 - (ii) If $C_n \subset X$ is compact and connected in a Hausdorff space, and $C_n \supset C_{n+1}$ for each n, show $\bigcap_{n=1}^{\infty} C_n$ is connected.
- 10. Suppose $A \subset \mathbb{R}^n$ is not compact. Show there is a continuous function on A which is not bounded.
- 11. A continuous function $f: X \to Y$ is proper if $f(C) \subset Y$ is closed whenever $C \subset X$ is closed and the preimages of points in Y are compact subsets of X. Prove a continuous function f from a compact space X to a Hausdorff space Y is proper. Deduce that if f is also a bijection then X and Y are homeomorphic.

- 12. Let X be a topological space. The one-point compactification X^+ of X is set-wise the union of X and an additional point ∞ (thought of as "at infinity") with the topology: $U \subset X^+$ is open if either
 - (i) $U \subset X$ is open in X or
 - (ii) $U = V \cup \{\infty\}$ where $V \subset X$ and $X \setminus V$ is both compact and closed in X.
 - Prove that X^+ is a topological space and prove that it is compact (N.B. regardless of whether X is compact or not!).
- 13. Using connectedness arguments, prove that the three intervals [0,1], (0,1) and [0,1) are pairwise not homeomorphic. Sketch a proof of the same result based on compactness arguments.
- 14. Prove that a discrete space is totally disconnected. Does the converse always hold? Can you give an example of a compact totally disconnected subset of \mathbb{R} ?
- 15. A family of sets has the *finite intersection property* if and only if every *finite* subfamily has non-empty intersection. Prove that a space X is compact if and only if whenever $\{V_a\}_{a\in A}$ is a family of closed subsets of X with the finite intersection property, the whole family has non-empty intersection.
- 16. Let $f: \mathbb{R} \to \mathbb{R}$ be an odd degree polynomial function. Prove that f has a real root.
- 17. Prove there is no continuous function $f:[0,1]\to\mathbb{R}$ such that $x\in\mathbb{Q} \Leftrightarrow f(x)\notin\mathbb{Q}$ (where \mathbb{Q} denotes the rational numbers).
- 18. A continuous surjective map $p: E \to B$ is a covering if every point $b \in B$ has an open neighbourhood V such that the connected components of $p^{-1}(V)$ are open in E, and p restricts to a homeomorphism from each such component onto V. Prove in this case that a map f from the unit interval [0,1] to B may be "lifted" to E: there is some $g:[0,1] \to E$ such that $p \circ g = f$. How unique is g?
- 19. Prove that the map $\mathbb{R} \to \mathbb{S}^1$ taking a real number t to the unit complex number e^{it} is a covering map.
- 20. Let \mathbb{R}^n denote Euclidean *n*-dimensional space with its usual metric topology. Prove that $\mathbb{R} = \mathbb{R}^1$ and \mathbb{R}^2 are not homeomorphic. Can you prove that \mathbb{R}^2 and \mathbb{R}^3 are not homeomorphic?
- 21. Let (X,d) be a compact metric space. Prove that a subspace $Z \subset X$ is compact only if every sequence in Z has a subsequence which converges in the metric to a point of Z. [Note: the question requires "only if" and not "if".]
 - Let X be the space of continuous functions from [0,1] to the reals $\mathbb R$ with the metric $d(f,g)=\sup\{|f(x)-g(x)|:x\in[0,1]\}$. Prove that the unit ball $\{u\in X\mid d(0,u)\leq 1\}$ is not compact, where 0 denotes the obvious zero-function. [Thus the "Heine-Borel" theorem is not valid in arbitrary metric spaces.]
- 22. Prove directly (i.e. not using any equivalence to other forms of compactness) that (a) a sequentially compact metric space is bounded and (b) the product of two sequentially compact metric spaces is sequentially compact.

23. Let M be a compact metric space and suppose that for every $n \in \mathbb{Z}_{\geq 0}$, $V_n \subset M$ is a closed subset and $V_{n+1} \subset V_n$. Prove that

$$\operatorname{diameter}(\bigcap_{n=1}^{\infty} V_n) = \inf \{ \operatorname{diameter}(V_n) \mid n \in \mathbb{Z}_{\geq 0} \}.$$

[Hint: suppose the LHS is smaller by some amount ϵ . Then for each n there is some pair of points $x_n, y_n \in V_n$ separated by more than LHS+ ϵ .]

- 24. Let X be a compact topological space. Prove that for any topological space T the second projection map $X \times T \to T$ is a closed map (i.e. the image of any closed set is closed).
- 25. Let $f: X \to Y$ be an arbitrary function, Y be a compact space and suppose the graph $\Gamma_f \subset X \times Y$ is closed. Prove that f is continuous.
- 26. Prove that if the continuous map ϕ is proper (cf. question 11) then $\phi \times \mathrm{id} : X \times T \to Y \times T$ is closed, for any topological space T and id $: T \to T$ the identity map.
- (Hard) We now prove the converse to q.24: a space X is compact if for all spaces T the second projection $p_T: X \times T \to T$ is closed. Let $\mathcal{U} = \{U_a\}_{a \in A}$ be some open cover of X. Form a new cover by adding all finite unions of sets U_a to \mathcal{U} . We will obtain a contradiction assuming that $U \neq X$ for all elements of the new cover.
 - (a) Let X' be the set comprised of X and an additional point P. Show we can define a topology for X' by taking a basis of open sets those of the form (i) $X' \setminus U_a$ for some U_a in the cover (ii) $W \cap (X \setminus U_a)$ for W open in X and any U_a .
 - (b) Let Γ denote the graph of the (not necessarily continuous) inclusion map from $X \to X'$. Show $P \in \pi(Cl(\Gamma))$ where π denotes the second projection map $X \times X' \to X'$.
 - (c) From above, we know $(x, P) \in Cl(\Gamma)$ for some $x \in X$. Prove this point x does not belong to any of the sets U of the cover, and hence obtain a contradiction.
 - (d) Deduce that if X, Y are both compact spaces then $X \times Y$ is also compact.

Ivan Smith is 200@cam.ac.uk