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Metric & Topological Spaces, sheet 2: (2006)

1. Which of the following subspaces of R2 are (a) connected (b) path-connected? Bt(x, y)
denotes the open t-disc about (x, y) ∈ R2 and X = cl(X) denotes closure.
(i) B1(1, 0) ∪ B1(−1, 0);
(ii) B1(1, 0) ∪ B1(−1, 0)
(iii) B1(1, 0) ∪ B1(−1, 0)
(iv) {(x, y) |x = 0 or y/x ∈ Q}.

2. Show the product of two connected spaces is connected.

3. Is C, with the Zariski topology (open sets are complements of finite sets, and the empty
set), connected?

4. Prove there is no continuous injection R2 → R.

5. Let Z = {0, 1} denote the two-point set with the discrete topology. Prove that a topolog-
ical space X is connected if and only if every continuous function λ : X → Z is constant.
Deduce that every path-connected space is connected.

It is a fact that a connected open subset U of the plane R2 is path-connected. Is this true
without the assumption that U be open?

6. Let X be a topological space and H ⊂ X a connected subset. Prove that cl(H) is
connected.

7. (a) Let φ : [0, 1] → [0, 1] be continuous. Prove (using connectedness) that φ has a fixed
point.

(b) Let S1 ⊂ R2 denote the unit circle in the Euclidean plane (with the subspace topology)
and let f : S1 → R be continuous. Prove there is some x ∈ S1 such that f(x) = f(−x).

8. Suppose f : [0, 1] → R is continuous and has f(0) = f(1). For each integer n ≥ 2 show
there is some x s.t. f(x) = f(x + 1

n
).

9. (i) Give an example of a sequence of closed connected subsets Cn ⊂ R2 s.t. Cn ⊃ Cn+1

but
⋂∞

n=1
Cn not connected.

(ii) If Cn ⊂ X is compact and connected in a Hausdorff space, and Cn ⊃ Cn+1 for each
n, show

⋂∞

n=1
Cn is connected.

10. Suppose A ⊂ Rn is not compact. Show there is a continuous function on A which is not
bounded.

11. A continuous function f : X → Y is proper if f(C) ⊂ Y is closed whenever C ⊂ X is
closed and the preimages of points in Y are compact subsets of X. Prove a continuous
function f from a compact space X to a Hausdorff space Y is proper. Deduce that if f is
also a bijection then X and Y are homeomorphic.
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12. Let X be a topological space. The one-point compactification X+ of X is set-wise the
union of X and an additional point ∞ (thought of as “at infinity”) with the topology:
U ⊂ X+ is open if either

(i) U ⊂ X is open in X or

(ii) U = V ∪ {∞} where V ⊂ X and X\V is both compact and closed in X.

Prove that X+ is a topological space and prove that it is compact (N.B. regardless of
whether X is compact or not!).

13. Using connectedness arguments, prove that the three intervals [0, 1], (0, 1) and [0, 1) are
pairwise not homeomorphic. Sketch a proof of the same result based on compactness
arguments.

14. Prove that a discrete space is totally disconnected. Does the converse always hold? Can
you give an example of a compact totally disconnected subset of R?

15. A family of sets has the finite intersection property if and only if every finite subfamily
has non-empty intersection. Prove that a space X is compact if and only if whenever
{Va}a∈A is a family of closed subsets of X with the finite intersection property, the whole
family has non-empty intersection.

16. Let f : R → R be an odd degree polynomial function. Prove that f has a real root.

17. Prove there is no continuous function f : [0, 1] → R such that x ∈ Q ⇔ f(x) 6∈ Q (where
Q denotes the rational numbers).

18. A continuous surjective map p : E → B is a covering if every point b ∈ B has an open
neighbourhood V such that the connected components of p−1(V ) are open in E, and p
restricts to a homeomorphism from each such component onto V . Prove in this case that
a map f from the unit interval [0, 1] to B may be “lifted” to E: there is some g : [0, 1] → E
such that p ◦ g = f . How unique is g?

19. Prove that the map R → S1 taking a real number t to the unit complex number eit is a
covering map.

20. Let Rn denote Euclidean n-dimensional space with its usual metric topology. Prove that
R = R1 and R2 are not homeomorphic. Can you prove that R2 and R3 are not homeo-
morphic?

21. Let (X, d) be a compact metric space. Prove that a subspace Z ⊂ X is compact only
if every sequence in Z has a subsequence which converges in the metric to a point of Z.
[Note: the question requires “only if” and not “if”.]

Let X be the space of continuous functions from [0, 1] to the reals R with the metric
d(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}. Prove that the unit ball {u ∈ X | d(0, u) ≤ 1} is
not compact, where 0 denotes the obvious zero-function. [Thus the “Heine-Borel” theorem
is not valid in arbitrary metric spaces.]

22. Prove directly (i.e. not using any equivalence to other forms of compactness) that (a)
a sequentially compact metric space is bounded and (b) the product of two sequentially
compact metric spaces is sequentially compact.
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23. Let M be a compact metric space and suppose that for every n ∈ Z≥0, Vn ⊂ M is a closed
subset and Vn+1 ⊂ Vn. Prove that

diameter(

∞⋂

n=1

Vn) = inf{diameter(Vn) | n ∈ Z≥0}.

[Hint: suppose the LHS is smaller by some amount ε. Then for each n there is some pair
of points xn, yn ∈ Vn separated by more than LHS+ε.]

24. Let X be a compact topological space. Prove that for any topological space T the second
projection map X × T → T is a closed map (i.e. the image of any closed set is closed).

25. Let f : X → Y be an arbitrary function, Y be a compact space and suppose the graph
Γf ⊂ X × Y is closed. Prove that f is continuous.

26. Prove that if the continuous map φ is proper (cf. question 11) then φ×id : X×T → Y ×T
is closed, for any topological space T and id : T → T the identity map.

(Hard) We now prove the converse to q.24: a space X is compact if for all spaces T the second
projection pT : X × T → T is closed. Let U = {Ua}a∈A be some open cover of X. Form
a new cover by adding all finite unions of sets Ua to U . We will obtain a contradiction
assuming that U 6= X for all elements of the new cover.

(a) Let X ′ be the set comprised of X and an additional point P . Show we can define a
topology for X ′ by taking a basis of open sets those of the form (i) X ′\Ua for some Ua in
the cover (ii) W ∩ (X\Ua) for W open in X and any Ua.

(b) Let Γ denote the graph of the (not necessarily continuous) inclusion map from X → X ′.
Show P ∈ π(Cl(Γ)) where π denotes the second projection map X × X ′ → X ′.

(c) From above, we know (x, P ) ∈ Cl(Γ) for some x ∈ X. Prove this point x does not
belong to any of the sets U of the cover, and hence obtain a contradiction.

(d) Deduce that if X,Y are both compact spaces then X × Y is also compact.
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