Linear Algebra: Example Sheet 4 of 4

1. The square matrices A and B over the field F are congruent if $B=P^{T} A P$ for some invertible matrix P over F. Which of the following symmetric matrices are congruent to the identity matrix over \mathbb{R}, and which over \mathbb{C} ? (Which, if any, over \mathbb{Q} ?) Try to get away with the minimum calculation.

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
4 & 4 \\
4 & 5
\end{array}\right) .
$$

2. Find the rank and signature of the following quadratic forms over \mathbb{R}.

$$
x^{2}+y^{2}+z^{2}-2 x z-2 y z, \quad x^{2}+2 y^{2}-2 z^{2}-4 x y-4 y z, \quad 16 x y-z^{2}, \quad 2 x y+2 y z+2 z x .
$$

If A is the matrix of the first of these (say), find a non-singular matrix P such that $P^{T} A P$ is diagonal with entries ± 1.
3. (i) Show that the function $\psi(A, B)=\operatorname{tr}\left(A B^{T}\right)$ is a symmetric positive definite bilinear form on the space $\operatorname{Mat}_{n}(\mathbb{R})$ of all $n \times n$ real matrices. Deduce that $\left|\operatorname{tr}\left(A B^{T}\right)\right| \leq \operatorname{tr}\left(A A^{T}\right)^{1 / 2} \operatorname{tr}\left(B B^{T}\right)^{1 / 2}$.
(ii) Show that the map $A \mapsto \operatorname{tr}\left(A^{2}\right)$ is a quadratic form on $\operatorname{Mat}_{n}(\mathbb{R})$. Find its rank and signature.
4. Let $\psi: V \times V \rightarrow \mathbb{C}$ be a Hermitian form on a complex vector space V.
(i) Show that if $n>2$ then $\psi(u, v)=\frac{1}{n} \sum_{k=1}^{n} \zeta^{k} \psi\left(u+\zeta^{k} v, u+\zeta^{k} v\right)$ where $\zeta=e^{2 \pi i / n}$.
(ii) Find the rank and signature of ψ in the case $V=\mathbb{C}^{3}$ and

$$
\psi(x, x)=\left|x_{1}+i x_{2}\right|^{2}+\left|x_{2}+i x_{3}\right|^{2}+\left|x_{3}+i x_{1}\right|^{2}-\left|x_{1}+x_{2}+x_{3}\right|^{2} .
$$

5. Show that the quadratic form $2\left(x^{2}+y^{2}+z^{2}+x y+y z+z x\right)$ is positive definite. Compute the basis of \mathbb{R}^{3} obtained by applying the Gram-Schmidt process to the standard basis.
6. Let $W \leq V$ with V an inner product space. An endomorphism π of V is called an idempotent if $\pi^{2}=\pi$. Show that the orthogonal projection onto W is a self-adjoint idempotent. Conversely show that any self-adjoint idempotent is orthogonal projection onto its image.
7. Let S be an $n \times n$ real symmetric matrix with $S^{k}=I$ for some $k \geq 1$. Show that $S^{2}=I$.
8. An endomorphism α of a finite dimensional inner product space V is positive definite if it is self-adjoint and satisfies $\langle\alpha(\mathbf{x}), \mathbf{x}\rangle>0$ for all non-zero $\mathbf{x} \in V$.
(i) Prove that a positive definite endomorphism has a unique positive definite square root.
(ii) Let α be an invertible endomorphism of V and α^{*} its adjoint. By considering $\alpha^{*} \alpha$, show that α can be factored as $\beta \gamma$ with β unitary and γ positive definite.
9. Let V be a finite dimensional complex inner product space, and let α be an endomorphism on V. Assume that α is normal, that is, α commutes with its adjoint: $\alpha \alpha^{*}=\alpha^{*} \alpha$. Show that α and α^{*} have a common eigenvector \mathbf{v}, and the corresponding eigenvalues are complex conjugates. Show that the subspace $\langle\mathbf{v}\rangle^{\perp}$ is invariant under both α and α^{*}. Deduce that there is an orthonormal basis of eigenvectors of α.
10. Find a linear transformation which reduces the pair of real quadratic forms

$$
2 x^{2}+3 y^{2}+3 z^{2}-2 y z, \quad x^{2}+3 y^{2}+3 z^{2}+6 x y+2 y z-6 z x
$$

to the forms

$$
X^{2}+Y^{2}+Z^{2}, \quad \lambda X^{2}+\mu Y^{2}+\nu Z^{2}
$$

for some $\lambda, \mu, \nu \in \mathbb{R}$ (which should turn out in this example to be integers).
Does there exist a linear transformation which reduces the pair of real quadratic forms $x^{2}-y^{2}, \quad 2 x y$ simultaneously to diagonal forms?
11. Prove Hadamard's Inequality: if A is a real $n \times n$ matrix with $\left|a_{i j}\right| \leq k$, then

$$
|\operatorname{det} A| \leq k^{n} n^{n / 2}
$$

12. Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional complex vector space and let $\alpha^{*}: V^{*} \rightarrow V^{*}$ be its dual. Show that a complex number λ is an eigenvalue for α if and only if it is an eigenvalue for α^{*}. How are the algebraic and geometric multiplicities of λ for α and α^{*} related? How are the minimal and characteristic polynomials for α and α^{*} related?
13. Let V be a finite dimensional vector space. Let $f_{1}, \ldots, f_{n}, g \in V^{*}$. Show that g is in the span of the f_{i} if and only if $\bigcap_{i} \operatorname{ker}\left(f_{i}\right) \subset \operatorname{ker}(g)$. What if V is infinite dimensional?
14. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $a_{1}+\cdots+a_{n}=0$ and $a_{1}^{2}+\cdots+a_{n}^{2}=1$. What is the maximum value of $a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{n-1} a_{n}+a_{n} a_{1}$?
