Linear Algebra: Example Sheet 3 of 4

Exercices 12-13-14 are more difficult and optional.

1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 3 & -1 \\
-1 & 1 & 1
\end{array}\right) .
$$

The second and third matrices commute; find a basis with respect to which they are both diagonal.
2. By considering the rank or minimal polynomial of a suitable matrix, find the eigenvalues of the $n \times n$ matrix A with each diagonal entry equal to λ and all other entries 1 . Hence write down the determinant of A.
3. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimum polynomial of A, over the complex numbers, has real coefficients.
4. (i) Let V be a vector space, let $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ be endomorphisms of V such that $\mathrm{id}_{V}=\pi_{1}+\cdots+\pi_{k}$ and $\pi_{i} \pi_{j}=0$ for any $i \neq j$. Show that $V=U_{1} \oplus \cdots \oplus U_{k}$, where $U_{j}=\operatorname{Im}\left(\pi_{j}\right)$.
(ii) Let α be an endomorphism of V satisfying the equation $\alpha^{3}=\alpha$. By finding suitable endomorphisms of V depending on α, use (i) to prove that $V=V_{0} \oplus V_{1} \oplus V_{-1}$, where V_{λ} is the λ-eigenspace of α.
5. Let α be an endomorphism of a complex vector space. Show that if λ is an eigenvalue for α then λ^{2} is an eigenvalue for α^{2}. Show further that every eigenvalue of α^{2} arises in this way. Are the eigenspaces $\operatorname{Ker}(\alpha-\lambda \iota)$ and $\operatorname{Ker}\left(\alpha^{2}-\lambda^{2} \iota\right)$ necessarily the same?
6. Without appealing directly to the uniqueness of Jordan Normal Form show that none of the following matrices are similar:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Is the matrix

$$
\left(\begin{array}{ccc}
-2 & -2 & -1 \\
3 & 3 & 1 \\
3 & 2 & 2
\end{array}\right)
$$

similar to any of them? If so, which? Find a basis such that it is in Jordan Normal Form.
7. (a) Recall that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for 4×4 complex matrices.
(b) Let A be a 5×5 complex matrix with $A^{4}=A^{2} \neq A$. What are the possible minimal polynomials of
A ? If A is not diagonalisable, what are the possible characteristic polynomials and JNFs of A ?
8. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^{n}=0$ but $\alpha^{n-1} \neq 0$. Without appealing to Jordan Normal Form, show that there is a vector y such that $\left(y, \alpha(y), \alpha^{2}(y), \ldots, \alpha^{n-1}(y)\right)$ is a basis for V. What is the matrix representation of α with respect to this basis? And the matrix representation of α^{k}, for an arbitrary positive integer k ?
Show that if β is an endomorphism of V which commutes with α, then $\beta=p(\alpha)$ for some polynomial p. [Hint: consider $\beta(y)$.$] What is the form of the matrix for \beta$ with respect to the above basis?
9. (a) Let A be an invertible square matrix. Describe the eigenvalues and the characteristic and minimal polynomials of A^{-1} in terms of those of A.
(b) Prove that the inverse of a Jordan block $J_{m}(\lambda)$ with $\lambda \neq 0$ has Jordan Normal Form a Jordan block $J_{m}\left(\lambda^{-1}\right)$. Use this to find the Jordan Normal Form of A^{-1}, for an invertible square matrix A.
(c) Prove that any square complex matrix is similar to its transpose.
10. Let C be an $n \times n$ matrix over \mathbb{C}, and write $C=A+i B$, where A and B are real $n \times n$ matrices. By considering $\operatorname{det}(A+\lambda B)$ as a function of λ, show that if C is invertible then there exists a real number λ such that $A+\lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C}, then they are similar as matrices over \mathbb{R}.
11. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, with $a_{i} \in \mathbb{C}$, and let C be the circulant matrix

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n} \\
a_{n} & a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{0} & \ldots & a_{n-2} \\
\vdots & & & \ddots & \vdots \\
a_{1} & a_{2} & a_{3} & \ldots & a_{0}
\end{array}\right)
$$

Show that the determinant of C is $\operatorname{det} C=\prod_{j=0}^{n} f\left(\zeta^{j}\right)$, where $\zeta=\exp (2 \pi i /(n+1))$.
12. Let E be a \mathbb{C} vector space of dimension $n \geq 1$. We say that $u \in \mathcal{L}(E)$ is cyclic if there exists $x \in E$ such that $\left(x, u(x), \ldots, u^{n-1}(x)\right)$ is a basis of E.
(a) Let u nilpotent with $\operatorname{dim} \operatorname{Ker}(u)=1$. Show that u is cyclic.
(b) Assume a decomposition $E=V_{1} \oplus \ldots \oplus V_{r}$ with $u\left(V_{i}\right) \subset V_{i}$ and $u_{\mid V_{i}}$ cyclic. Show that if the minimal polynomials of $u_{\mid V_{i}}, 1 \leq i \leq r$, are prime to one another, then u is cyclic.
(c) Let $A \in \mathcal{M}_{n}(\mathbb{C})$. Show that the following are equivalent.
(a) The minimal polynomial of A is of degree n .
(b) The eigenspaces of A are all one dimensional.
(c) There exists $Y \in \mathbb{C}^{n}$ such that $\left(Y, \ldots, A^{n-1} Y\right)$ is a basis of \mathbb{C}^{n}.
(d) The map $f_{A}: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $(X, Y) \mapsto\left({ }^{t} X Y, \ldots,{ }^{t} X A^{n-1} Y\right)$ is surjective.
(e) The set of vector subspaces of \mathbb{C}^{n} which are stable by A is finite.
13. (a) Let E be a vector space over \mathbb{C} of dimension $n \geq 1$. Let u be an endomorphism of E. Show (without using the Jordan decomposition) that there exists a unique couple (D, N) of endomorphisms of E such that $u=D+N, D$ is diagonal, N is nilpotent and $D N=N D$.
(b) Solve the equation $e^{M}=\operatorname{Id}$ in $\mathcal{M}_{n}(\mathbb{C})$.
(c) Solve the equation $e^{M}=\operatorname{Id}$ in $\mathcal{M}_{n}(\mathbb{R})$
14. Let E be a vector space over \mathbb{C} of dimension $n \geq 1$. Let u be an endomorphism of E. We define the subsets of $\mathcal{L}(E)$:

$$
\mathbb{C}(u)=\{P(u), \quad P(X) \in \mathbb{C}[X]\} \subset \Gamma(u)=\{v \in \mathcal{L}(E), \quad v u=u v\}
$$

(a) Show that $\operatorname{dim} \mathbb{C}(u)=\operatorname{deg} \mu_{u}$ where μ_{u} is the minimal polynomial of u.
(b) Assume u is diagonalizable with distinct eigenvalues $\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of multiplicity $\left(n_{1}, \ldots, n_{r}\right)$. Show that

$$
\operatorname{dim} \mathbb{C}(u)=r \text { and } \operatorname{dim} \Gamma(u)=\sum_{i=1}^{r} n_{i}^{2}
$$

Conclude that

$$
\operatorname{dim} \mathbb{C}(u)=n \Leftrightarrow \operatorname{dim} \Gamma(u)=n \Leftrightarrow r=n \Leftrightarrow \mathbb{C}(u)=\Gamma(u)
$$

(c) We no longer assume u diagonalizable. Show that $\operatorname{dim} \Gamma(u) \geq n$.
(d) We say that u is cyclic if its minimal polynomial is of degree n . Show that u cyclic $\Leftrightarrow \Gamma(u)=\mathbb{C}(u)$. (Hint: If u is cyclic, show that there exists $X \in \mathbb{R}^{n}$ such $\left(X, u(X), \ldots, u^{n-1}(X)\right)$ is a basis of E and consider the linear map $\left.f: B \in \mathcal{C}(A) \mapsto B X \in \mathbb{R}^{n}\right)$

