Michaelmas Term 2022

Is the matrix

Linear Algebra: Example Sheet 3 of 4

Exercices 12-13-14 are more difficult and optional.

1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$(1 \ 1 \ 0)$	$\begin{pmatrix} 1 & 1 & -1 \end{pmatrix}$	(1	1	-1	\
$\begin{bmatrix} 0 & 3 & -2 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 & -2 \end{bmatrix}$,	-1	3	-1).
$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	(-1)	1	1	/

The second and third matrices commute; find a basis with respect to which they are both diagonal.

- 2. By considering the rank or minimal polynomial of a suitable matrix, find the eigenvalues of the $n \times n$ matrix A with each diagonal entry equal to λ and all other entries 1. Hence write down the determinant of A.
- 3. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimum polynomial of A, over the complex numbers, has real coefficients.
- 4. (i) Let V be a vector space, let π₁, π₂,..., π_k be endomorphisms of V such that id_V = π₁ + ··· + π_k and π_iπ_j = 0 for any i ≠ j. Show that V = U₁ ⊕ ··· ⊕ U_k, where U_j = Im(π_j).
 (ii) Let α be an endomorphism of V satisfying the equation α³ = α. By finding suitable endomorphisms
 - (ii) Let α be an endomorphism of V satisfying the equation $\alpha^3 = \alpha$. By finding suitable endomorphisms of V depending on α , use (i) to prove that $V = V_0 \oplus V_1 \oplus V_{-1}$, where V_{λ} is the λ -eigenspace of α .
- 5. Let α be an endomorphism of a complex vector space. Show that if λ is an eigenvalue for α then λ^2 is an eigenvalue for α^2 . Show further that every eigenvalue of α^2 arises in this way. Are the eigenspaces $\operatorname{Ker}(\alpha \lambda \iota)$ and $\operatorname{Ker}(\alpha^2 \lambda^2 \iota)$ necessarily the same?
- 6. Without appealing directly to the uniqueness of Jordan Normal Form show that none of the following matrices are similar:

$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$
	$\begin{pmatrix} -2 & -2 & -1 \\ 3 & 3 & 1 \\ 3 & 2 & 2 \end{pmatrix}$	

similar to any of them? If so, which? Find a basis such that it is in Jordan Normal Form.

- 7. (a) Recall that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for 4×4 complex matrices.
 (b) Let A be a 5×5 complex matrix with A⁴ = A² ≠ A. What are the possible minimal polynomials of A? If A is not diagonalisable, what are the possible characteristic polynomials and JNFs of A?
- 8. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^n = 0$ but $\alpha^{n-1} \neq 0$. Without appealing to Jordan Normal Form, show that there is a vector y such that $(y, \alpha(y), \alpha^2(y), \ldots, \alpha^{n-1}(y))$ is a basis for V. What is the matrix representation of α with respect to this basis? And the matrix representation of α^k , for an arbitrary positive integer k?

Show that if β is an endomorphism of V which commutes with α , then $\beta = p(\alpha)$ for some polynomial p. [*Hint: consider* $\beta(y)$.] What is the form of the matrix for β with respect to the above basis?

- 9. (a) Let A be an invertible square matrix. Describe the eigenvalues and the characteristic and minimal polynomials of A^{-1} in terms of those of A.
 - (b) Prove that the inverse of a Jordan block $J_m(\lambda)$ with $\lambda \neq 0$ has Jordan Normal Form a Jordan block $J_m(\lambda^{-1})$. Use this to find the Jordan Normal Form of A^{-1} , for an invertible square matrix A.
 - (c) Prove that any square complex matrix is similar to its transpose.

- 10. Let C be an $n \times n$ matrix over \mathbb{C} , and write C = A + iB, where A and B are real $n \times n$ matrices. By considering det $(A + \lambda B)$ as a function of λ , show that if C is invertible then there exists a real number λ such that $A + \lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C} , then they are similar as matrices over \mathbb{R} .
- 11. Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$, with $a_i \in \mathbb{C}$, and let C be the *circulant* matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ a_n & a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_n & a_0 & \dots & a_{n-2} \\ \vdots & & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{pmatrix}.$$

Show that the determinant of C is $\det C = \prod_{i=0}^{n} f(\zeta^{i})$, where $\zeta = \exp(2\pi i/(n+1))$.

- 12. Let E be a \mathbb{C} vector space of dimension $n \ge 1$. We say that $u \in \mathcal{L}(E)$ is cyclic if there exists $x \in E$ such that $(x, u(x), \ldots, u^{n-1}(x))$ is a basis of E.
 - (a) Let u nilpotent with dimKer(u) = 1. Show that u is cyclic.
 - (b) Assume a decomposition $E = V_1 \oplus \ldots \oplus V_r$ with $u(V_i) \subset V_i$ and $u_{|V_i|}$ cyclic. Show that if the minimal polynomials of $u_{|V_i|}$, $1 \leq i \leq r$, are prime to one another, then u is cyclic.
 - (c) Let $A \in \mathcal{M}_n(\mathbb{C})$. Show that the following are equivalent.
 - (a) The minimal polynomial of A is of degree n.
 - (b) The eigenspaces of A are all one dimensional.
 - (c) There exists $Y \in \mathbb{C}^n$ such that $(Y, \ldots, A^{n-1}Y)$ is a basis of \mathbb{C}^n .
 - (d) The map $f_A : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}^n$ given by $(X, Y) \mapsto ({}^t XY, \dots, {}^t XA^{n-1}Y)$ is surjective.
 - (e) The set of vector subspaces of \mathbb{C}^n which are stable by A is finite.
- 13. (a) Let E be a vector space over \mathbb{C} of dimension $n \ge 1$. Let u be an endomorphism of E. Show (without using the Jordan decomposition) that there exists a unique couple (D, N) of endomorphisms of E such that u = D + N, D is diagonal, N is nilpotent and DN = ND.
 - (b) Solve the equation $e^M = \text{Id in } \mathcal{M}_n(\mathbb{C}).$
 - (c) Solve the equation $e^M = \text{Id in } \mathcal{M}_n(\mathbb{R})$
- 14. Let E be a vector space over \mathbb{C} of dimension $n \ge 1$. Let u be an endomorphism of E. We define the subsets of $\mathcal{L}(E)$:

$$\mathbb{C}(u) = \{ P(u), \ P(X) \in \mathbb{C}[X] \} \subset \Gamma(u) = \{ v \in \mathcal{L}(E), \ vu = uv \}.$$

- (a) Show that $\dim \mathbb{C}(u) = \deg \mu_u$ where μ_u is the minimal polynomial of u.
- (b) Assume u is diagonalizable with distinct eigenvalues $(\lambda_1, \ldots, \lambda_r)$ of multiplicity (n_1, \ldots, n_r) . Show that

$$\dim \mathbb{C}(u) = r$$
 and $\dim \Gamma(u) = \sum_{i=1}^{r} n_i^2$

Conclude that

$$\dim \mathbb{C}(u) = n \Leftrightarrow \dim \Gamma(u) = n \Leftrightarrow r = n \Leftrightarrow \mathbb{C}(u) = \Gamma(u).$$

- (c) We no longer assume u diagonalizable. Show that $\dim \Gamma(u) \ge n$.
- (d) We say that u is cyclic if its minimal polynomial is of degree n. Show that u cyclic $\Leftrightarrow \Gamma(u) = \mathbb{C}(u)$. (*Hint: If u is cyclic, show that there exists* $X \in \mathbb{R}^n$ such $(X, u(X), \dots, u^{n-1}(X))$ is a basis of E and consider the linear map $f : B \in \mathcal{C}(A) \mapsto BX \in \mathbb{R}^n$)