Michaelmas Term 2022

Linear Algebra: Example Sheet 2 of 4

Exercices 12-13-14-15 are more difficult and optional.

1. Write down the three types of elementary matrices and find their inverses. Use elementary matrices to find the inverse of

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 3 & -1 \end{pmatrix}.$$

- 2. (Another proof of the row rank column rank equality.) Let A be an $m \times n$ matrix of (column) rank r. Show that r is the least integer for which A factorises as A = BC with $B \in \operatorname{Mat}_{m,r}(\mathbb{F})$ and $C \in \operatorname{Mat}_{r,n}(\mathbb{F})$. Using the fact that $(BC)^T = C^T B^T$, deduce that the (column) rank of A^T equals r.
- 3. Let V be a 4-dimensional vector space over \mathbb{R} , and let $\{\xi_1, \xi_2, \xi_3, \xi_4\}$ be the basis of V^* dual to the basis $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ for V. Determine, in terms of the ξ_i , the bases dual to each of the following:
 - (a) $\{\mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_4, \mathbf{x}_3\}$; (b) $\{\mathbf{x}_1, 2\mathbf{x}_2, \frac{1}{2}\mathbf{x}_3, \mathbf{x}_4\}$;
 - (c) $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$; (c) $\{\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_2 + \mathbf{x}_3, \mathbf{x}_3 + \mathbf{x}_4, \mathbf{x}_4\}$;
 - (d) $\{\mathbf{x}_1, \mathbf{x}_2 \mathbf{x}_1, \mathbf{x}_3 \mathbf{x}_2 + \mathbf{x}_1, \mathbf{x}_4 \mathbf{x}_3 + \mathbf{x}_2 \mathbf{x}_1\}$.
- 4. For $A \in \operatorname{Mat}_{n,m}(\mathbb{F})$ and $B \in \operatorname{Mat}_{m,n}(\mathbb{F})$, let $\tau_A(B)$ denote $\operatorname{tr}(AB)$. Show that, for each fixed A, $\tau_A: \operatorname{Mat}_{m,n}(\mathbb{F}) \to \mathbb{F}$ is linear. Show moreover that the mapping $A \mapsto \tau_A$ defines a linear isomorphism $\operatorname{Mat}_{n,m}(\mathbb{F}) \to \operatorname{Mat}_{m,n}(\mathbb{F})^*$.
- 5. (a) Suppose that f ∈ Mat_{n,n}(𝔅)* is such that f(AB) = f(BA) for all A, B ∈ Mat_{n,n}(𝔅) and f(I) = n. Show that f is the trace functional, i.e. f(A) = trA for all A ∈ Mat_{n,n}(F).
 (b) Now let V be a non-zero finite dimensional real vector space. Show that there are no endomorphisms

 α, β of V with $\alpha\beta - \beta\alpha = \mathrm{id}_V$. (c) Let V be the space of infinitely differentiable functions $\mathbb{R} \to \mathbb{R}$. Find endomorphisms α and β of V such that $\alpha\beta - \beta\alpha = \mathrm{id}_V$.

6. Suppose that $\psi: U \times V \to \mathbb{F}$ is a bilinear form of rank r on finite dimensional vector spaces U and V over \mathbb{F} . Show that there exist bases e_1, \ldots, e_m for U and f_1, \ldots, f_n for V such that

$$\psi\left(\sum_{i=1}^{m} x_i e_i, \sum_{j=1}^{n} y_j f_j\right) = \sum_{k=1}^{r} x_k y_k$$

for all $x_1, \ldots, x_m, y_1, \ldots, y_n \in \mathbb{F}$. What are the dimensions of the left and right kernels of ψ ?

7. (a) Let $a_0, ..., a_n$ be distinct real numbers, and let

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_0 & a_1 & \cdots & a_n \\ a_0^2 & a_1^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_0^n & a_1^n & \cdots & a_n^n \end{pmatrix}$$

Show that $det(A) \neq 0$.

(b) Let P_n be the space of real polynomials of degree at most n. For $x \in \mathbf{R}$ define $e_x \in P_n^*$ by $e_x(p) = p(x)$. By considering the standard basis $(1, t, \ldots, t^n)$ for P_n , use (a) to show that $\{e_0, \ldots, e_n\}$ is linearly independent and hence forms a basis for P_n^* .

(c) Identify the basis of P_n to which $(e_0, ..., e_n)$ is dual.

8. Let A, B be $n \times n$ matrices, where $n \ge 2$. Show that, if A and B are non-singular, then

 $(i) \operatorname{adj} (AB) = \operatorname{adj} (B) \operatorname{adj} (A), \quad (ii) \operatorname{det} (\operatorname{adj} A) = (\operatorname{det} A)^{n-1}, \quad (iii) \operatorname{adj} (\operatorname{adj} A) = (\operatorname{det} A)^{n-2} A.$

Show that the rank of the adjugate matrix is $r(adj A) = \begin{cases} n & \text{if } r(A) = n \\ 1 & \text{if } r(A) = n - 1 \\ 0 & \text{if } r(A) \leq n - 2. \end{cases}$

Do (i)-(iii) hold if A is singular? [Hint: for (i) consider $A + \lambda I$ for $\lambda \in \mathbb{F}$.]

9. Show that the dual of the space P of real polynomials is isomorphic to the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, via the mapping which sends a linear form $\xi : P \to \mathbb{R}$ to the sequence $(\xi(1), \xi(t), \xi(t^2), \ldots)$.

In terms of this identification, describe the effect on a sequence $(a_0, a_1, a_2, ...)$ of the linear maps dual to each of the following linear maps $P \to P$:

- (a) The map D defined by D(p)(t) = p'(t).
- (b) The map S defined by $S(p)(t) = p(t^2)$.
- (c) The composite DS.
- (d) The composite SD.

Verify that $(DS)^* = S^*D^*$ and $(SD)^* = D^*S^*$.

- 10. Let V be a finite dimensional vector space. Suppose that $f_1, \ldots, f_n, g \in V^*$. Show that g is in the span of f_1, \ldots, f_n if and only if $\bigcap_{i=1}^n \ker f_i \subset \ker g$. What if V is infinite dimensional?
- 11. Let α : V → V be a linear map on a real finite dimensional vector space V with tr(α) = 0.
 (i) Show that, if α ≠ 0, there is a vector v with v, α(v) linearly independent. Deduce that there is a basis for V relative to which α is represented by a matrix A with all of its diagonal entries equal to 0.
 (ii) Show that there are endomorphisms β, γ of V with α = βγ γβ.
- 12. Let A, H in $\mathcal{M}_n(\mathbb{R})$ with H of rank 1. Show that $\det(A+H)\det(A-H) \leq (\det A)^2$.
- 13. Let $A \in \mathcal{M}_n(\mathbb{R})$ such that $\forall 1 \leq i \leq n, |a_{i,i}| > \sum_{i \neq i} |a_{i,j}|$.
 - (a) Show that A is invertible.
 - (b) Assume moreover $\forall 1 \leq i \leq n, a_{i,i} \geq 0$. Is detA > 0?
- 14. Let A, B in $\mathcal{M}_n(\mathbb{R})$ such that $\exists X \in \operatorname{Ker} A \setminus \{0\}$ with $BX \in \operatorname{Im} A$. Let A_i be the matrix obtained by replacing the *i*-th column of A by the *i*-th column of B. Show that $\sum_{i=1}^{n} \det A_i = 0$.
- 15. Let $M \in \mathcal{M}_n(\mathbb{R})$.
 - (a) Let Δ_{i,j} be the minor of order i, j that is the determinant of the matrix obtained by removing the i-th line and the j-th column from M. More generally, let Δ_{I,J} be the determinant of the matrix obtained by removing all the lines i ∈ I and columns j ∈ J from M. Show that Δ_{{1,n},{1,n}} detM = Δ_{1,1}Δ_{n,n} − Δ_{1,n}Δ_{n,1}. (*Hint: consider the matrix M* obtained by replacing in adj(M) the element (i,j) for 1 ≤ i ≤ n, 2 ≤ j ≤ n − 1, by 0 if i ≠ j and 1 for i = j.*)
 - (b) Let a real sequence $(a_k)_{k\geq 1}$ and let D_n be the determinant of the matrix $(a_{|i-j|})_{1\leq i,j\leq n}$. Show that $D_{n-2}D_n \leq D_{n-1}^2$.