Linear Algebra: Example Sheet 1 of 4

Exercices 13-14-15-16 are more difficult and optional.

1. Suppose that the vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ form a basis for a real vector space V. Which of the following are also bases?
(a) $\mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{2}+\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}+\mathbf{e}_{n}, \mathbf{e}_{n}$;
(b) $\mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{2}+\mathbf{e}_{3}, \ldots, \mathbf{e}_{n-1}+\mathbf{e}_{n}, \mathbf{e}_{n}+\mathbf{e}_{1}$;
(c) $\mathbf{e}_{1}-\mathbf{e}_{n}, \mathbf{e}_{2}+\mathbf{e}_{n-1}, \ldots, \mathbf{e}_{n}+(-1)^{n} \mathbf{e}_{1}$.
2. Let T, U and W be subspaces of V.
(i) Show that $T \cup U$ is a subspace of V only if either $T \leq U$ or $U \leq T$.
(ii) Give explicit counter-examples to the following statements:
(a) $T+(U \cap W)=(T+U) \cap(T+W) ;$
(b) $\quad(T+U) \cap W=(T \cap W)+(U \cap W)$.
(iii) Show that each of the equalities in (ii) can be replaced by a valid inclusion of one side in the other.
3. For each of the following pairs of vector spaces (V, W) over \mathbb{R}, either give an isomorphism $V \rightarrow W$ or show that no such isomorphism can exist. [Here P denotes the space of polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$, and $C[a, b]$ denotes the space of continuous functions defined on the closed interval $[a, b]$.
(a) $V=\mathbb{R}^{4}, W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0\right\}$.
(b) $V=\mathbb{R}^{5}, W=\{p \in P: \operatorname{deg} p \leq 5\}$.
(c) $V=C[0,1], \quad W=C[-1,1]$.
(d) $V=C[0,1], W=\{f \in C[0,1]: f(0)=0, f$ continuously differentiable $\}$.
(e) $V=\mathbb{R}^{2}, W=\{$ real solutions of $\ddot{x}(t)+x(t)=0\}$.
(f) $V=\mathbb{R}^{4}, \quad W=C[0,1]$.
(g) (Harder:) $V=P, W=\mathbb{R}^{\mathbb{N}}$.
4. (i) If α and β are linear maps from U to V show that $\alpha+\beta$ is linear. Give explicit counter-examples to the following statements:
(a) $\operatorname{Im}(\alpha+\beta)=\operatorname{Im}(\alpha)+\operatorname{Im}(\beta)$;
(b) $\operatorname{Ker}(\alpha+\beta)=\operatorname{Ker}(\alpha) \cap \operatorname{Ker}(\beta)$.

Show that in general each of these equalities can be replaced by a valid inclusion of one side in the other. (ii) Let α be a linear map from V to V. Show that if $\alpha^{2}=\alpha$ then $V=\operatorname{Ker}(\alpha) \oplus \operatorname{Im}(\alpha)$. Does your proof still work if V is infinite dimensional? Is the result still true?
5. Let

$$
U=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{3}+x_{4}=0,2 x_{1}+2 x_{2}+x_{5}=0\right\}, \quad W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+x_{5}=0, x_{2}=x_{3}=x_{4}\right\}
$$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for $U+W$ and show that

$$
U+W=\left\{\mathbf{x} \in \mathbb{R}^{5}: x_{1}+2 x_{2}+x_{5}=x_{3}+x_{4}\right\}
$$

6. (i) Let $\alpha: V \rightarrow V$ be an endomorphism of a finite dimensional vector space V. Show that

$$
V \geq \operatorname{Im}(\alpha) \geq \operatorname{Im}\left(\alpha^{2}\right) \geq \ldots \quad \text { and } \quad\{0\} \leq \operatorname{Ker}(\alpha) \leq \operatorname{Ker}\left(\alpha^{2}\right) \leq \ldots
$$

If $r_{k}=\mathrm{r}\left(\alpha^{k}\right)$, deduce that $r_{k} \geq r_{k+1}$ and that $r_{k}-r_{k+1} \geq r_{k+1}-r_{k+2}$. Conclude that if, for some $k \geq 0$, we have $r_{k}=r_{k+1}$, then $r_{k}=r_{k+\ell}$ for all $\ell \geq 0$.
(ii) Suppose that $\operatorname{dim}(V)=5, \alpha^{3}=0$, but $\alpha^{2} \neq 0$. What possibilities are there for $\mathrm{r}(\alpha)$ and $\mathrm{r}\left(\alpha^{2}\right)$?
7. Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by $\alpha:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \mapsto\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. Find the matrix representing α relative to the basis $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ for both the domain and the range. Write down bases for the domain and range with respect to which the matrix of α is the identity.
8. Let U_{1}, \ldots, U_{k} be subspaces of a vector space V and let B_{i} be a basis for U_{i}. Show that the following statements are equivalent:
(i) $U=\sum_{i} U_{i}$ is a direct sum, i.e. every element of U can be written uniquely as $\sum_{i} u_{i}$ with $u_{i} \in U_{i}$.
(ii) $U_{j} \cap \sum_{i \neq j} U_{i}=\{0\}$ for all j.
(iii) The B_{i} are pairwise disjoint and their union is a basis for $\sum_{i} U_{i}$.

Give an example where $U_{i} \cap U_{j}=\{0\}$ for all $i \neq j$, yet $U_{1}+\ldots+U_{k}$ is not a direct sum.
9. Show that any two subspaces of the same dimension in a finite dimensional real vector space have a common complementary subspace.
10. Let Y and Z be subspaces of the finite dimensional vector spaces V and W, respectively. Show that $R=\{\alpha \in \mathcal{L}(V, W): \alpha(Y) \leq Z\}$ is a subspace of the space $\mathcal{L}(V, W)$ of all linear maps from V to W. What is the dimension of R ?
11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Suppose that $\alpha: V \rightarrow W$ is a linear map such that $\alpha(Y) \subset Z$. Show that α induces linear maps $\left.\alpha\right|_{Y}: Y \rightarrow Z$ via $\left.\alpha\right|_{Y}(y)=\alpha(y)$ and $\bar{\alpha}: V / Y \rightarrow W / Z$ via $\bar{\alpha}(v+Y)=\alpha(v)+Z$.
Consider a basis $\left(v_{1}, \ldots, v_{n}\right)$ for V containing a basis $\left(v_{1}, \ldots, v_{k}\right)$ for Y and a basis $\left(w_{1}, \ldots, w_{m}\right)$ for W containing a basis $\left(w_{1}, \ldots, w_{l}\right)$ for Z. Show that the matrix representing α with respect to $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$ is a block matrix of the form $\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$. Explain how to determine the matrices representing $\left.\alpha\right|_{Y}$ with respect to the bases $\left(v_{1}, \ldots, v_{k}\right)$ and $\left(w_{1}, \ldots, w_{l}\right)$ and representing $\bar{\alpha}$ with respect to the bases $\left(v_{k+1}+Y, \ldots, v_{n}+Y\right)$ and $\left(w_{l+1}+Z, \ldots, w_{m}+Z\right)$ from this block matrix.
12. Let T, U, V, W be vector spaces over \mathbb{F} and let $\alpha: T \rightarrow U, \beta: V \rightarrow W$ be fixed linear maps. Show that the mapping $\Phi: \mathcal{L}(U, V) \rightarrow \mathcal{L}(T, W)$ which sends θ to $\beta \circ \theta \circ \alpha$ is linear. If the spaces are finite-dimensional and α and β have rank r and s respectively, find the rank of Φ.
13. Let E be a complex vector space of dimension $n \geq 1$ and $u \in \mathcal{L}(E)$ be nilpotent of order $p\left(u^{p}=0\right.$ and $\left.u^{p-1} \neq 0\right)$. Show that there exists a decomposition $E=F_{1} \oplus \ldots \oplus F_{p}$ with $u\left(F_{1}\right)=\{0\}$ and for $j \geq 2$, u induces an injection of F_{j} to F_{j-1}. Moreover, for $1 \leq j \leq p, \operatorname{Ker}\left(u^{j}\right)=F_{1} \oplus \ldots \oplus F_{j}$.
14. (i) Let \mathcal{G} be a subset of $\mathcal{M}_{n}(\mathbb{R})$ which is a group for the multiplication of matrices. Show that all elements of \mathcal{G} have the same rank p and that there exists a basis \mathcal{B} of \mathbb{R}^{n} in which any element of \mathcal{G} is represented by a matrix of the form $\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)$ where A is $p \times p$.
(ii) Let $M \in \mathcal{M}_{n}(\mathbb{R})$. Show that the following are equivalent:
(a) M belongs to a group \mathcal{G} as above.
(b) M and M^{2} have the same rank.
(c) $\mathbb{R}^{n}=\operatorname{Im} M \oplus \operatorname{Ker} M$.
15. Let E be a complex vector space of dimension $n \geq 1$. Let f be an endomorphism of E. Show the existence and uniqueness of (F, G) vector subspaces of E such that:
(a) $F \oplus G=E$;
(b) F, G are stable by f;
(c) $f_{\mid F}$ is nilpotent and $f_{\mid G}$ is invertible.
(Hint: consider the sequences $F_{k}=\operatorname{Ker} f^{k}$ and $G_{k}=\operatorname{Im} f^{k}$.)
16. Let E be a complex vector space of dimension $n \geq 1$. Let f, g be two endomorphisms of E with $f g=g f$. Show that the following are equivalent:
(a) $\operatorname{Ker} f \cap \operatorname{Ker} g=\{0\}$;
(b) $\operatorname{Im} f+\operatorname{Im} g=E$;
(c) there exists a finite set S such that $\forall t \in \mathbb{C} \backslash S, f+t g$ is invertible.

