Michaelmas Term 2022

Linear Algebra: Example Sheet 1 of 4

Exercices 13-14-15-16 are more difficult and optional.

- 1. Suppose that the vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ form a basis for a real vector space V. Which of the following are also bases?
 - (a) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n;$
 - (b) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n + \mathbf{e}_1;$
 - (c) $\mathbf{e}_1 \mathbf{e}_n, \mathbf{e}_2 + \mathbf{e}_{n-1}, \dots, \mathbf{e}_n + (-1)^n \mathbf{e}_1.$
- 2. Let T, U and W be subspaces of V.
 - (i) Show that $T \cup U$ is a subspace of V only if either $T \leq U$ or $U \leq T$.
 - (ii) Give explicit counter-examples to the following statements:

(a)
$$T + (U \cap W) = (T + U) \cap (T + W);$$
 (b) $(T + U) \cap W = (T \cap W) + (U \cap W).$

(iii) Show that each of the equalities in (ii) can be replaced by a valid inclusion of one side in the other.

- 3. For each of the following pairs of vector spaces (V, W) over R, either give an isomorphism V → W or show that no such isomorphism can exist. [Here P denotes the space of polynomial functions R → R, and C[a, b] denotes the space of continuous functions defined on the closed interval [a, b].]
 (a) V = R⁴, W = {**x** ∈ R⁵ : x₁ + x₂ + x₃ + x₄ + x₅ = 0}.
 (b) V = R⁵, W = {p ∈ P : deg p ≤ 5}.
 (c) V = C[0, 1], W = C[-1, 1].
 (d) V = R², W = {real solutions of ẍ(t) + x(t) = 0}.
 (f) V = R⁴, W = C[0, 1].
 (g) (Harder:) V = P, W = R^N.
- 4. (i) If α and β are linear maps from U to V show that $\alpha + \beta$ is linear. Give explicit counter-examples to the following statements:

(a)
$$\operatorname{Im}(\alpha + \beta) = \operatorname{Im}(\alpha) + \operatorname{Im}(\beta);$$
 (b) $\operatorname{Ker}(\alpha + \beta) = \operatorname{Ker}(\alpha) \cap \operatorname{Ker}(\beta).$

Show that in general each of these equalities can be replaced by a valid inclusion of one side in the other. (ii) Let α be a linear map from V to V. Show that if $\alpha^2 = \alpha$ then $V = \text{Ker}(\alpha) \oplus \text{Im}(\alpha)$. Does your proof still work if V is infinite dimensional? Is the result still true?

5. Let

 $U = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_3 + x_4 = 0, \ 2x_1 + 2x_2 + x_5 = 0 \}, \ W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_5 = 0, \ x_2 = x_3 = x_4 \}.$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for U + W and show that

$$U + W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + 2x_2 + x_5 = x_3 + x_4 \}.$$

6. (i) Let $\alpha: V \to V$ be an endomorphism of a finite dimensional vector space V. Show that

$$V \ge \operatorname{Im}(\alpha) \ge \operatorname{Im}(\alpha^2) \ge \dots$$
 and $\{0\} \le \operatorname{Ker}(\alpha) \le \operatorname{Ker}(\alpha^2) \le \dots$

If $r_k = r(\alpha^k)$, deduce that $r_k \ge r_{k+1}$ and that $r_k - r_{k+1} \ge r_{k+1} - r_{k+2}$. Conclude that if, for some $k \ge 0$, we have $r_k = r_{k+1}$, then $r_k = r_{k+\ell}$ for all $\ell \ge 0$. (ii) Suppose that dim(V) = 5, $\alpha^3 = 0$, but $\alpha^2 \ne 0$. What possibilities are there for $r(\alpha)$ and $r(\alpha^2)^2$.

(ii) Suppose that $\dim(V) = 5$, $\alpha^3 = 0$, but $\alpha^2 \neq 0$. What possibilities are there for $r(\alpha)$ and $r(\alpha^2)$?

- 7. Let $\alpha : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by $\alpha : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find the matrix
 - representing α relative to the basis $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ for both the domain and the range.

Write down bases for the domain and range with respect to which the matrix of α is the identity.

- 8. Let U_1, \ldots, U_k be subspaces of a vector space V and let B_i be a basis for U_i . Show that the following statements are equivalent:
 - (i) $U = \sum_{i} U_i$ is a direct sum, *i.e.* every element of U can be written uniquely as $\sum_{i} u_i$ with $u_i \in U_i$.
 - (ii) $U_j \cap \sum_{i \neq j} U_i = \{0\}$ for all j.
 - (iii) The B_i are pairwise disjoint and their union is a basis for $\sum_i U_i$.

Give an example where $U_i \cap U_j = \{0\}$ for all $i \neq j$, yet $U_1 + \ldots + U_k$ is not a direct sum.

- 9. Show that any two subspaces of the same dimension in a finite dimensional real vector space have a common complementary subspace.
- 10. Let Y and Z be subspaces of the finite dimensional vector spaces V and W, respectively. Show that $R = \{\alpha \in \mathcal{L}(V, W) : \alpha(Y) \leq Z\}$ is a subspace of the space $\mathcal{L}(V, W)$ of all linear maps from V to W. What is the dimension of R?
- 11. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Suppose that $\alpha: V \to W$ is a linear map such that $\alpha(Y) \subset Z$. Show that α induces linear maps $\alpha|_Y: Y \to Z$ via $\alpha|_Y(y) = \alpha(y)$ and $\overline{\alpha}: V/Y \to W/Z$ via $\overline{\alpha}(v+Y) = \alpha(v) + Z$.

Consider a basis (v_1, \ldots, v_n) for V containing a basis (v_1, \ldots, v_k) for Y and a basis (w_1, \ldots, w_m) for W containing a basis (w_1, \ldots, w_l) for Z. Show that the matrix representing α with respect to (v_1, \ldots, v_n) and (w_1, \ldots, w_m) is a block matrix of the form $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Explain how to determine the matrices representing $\alpha|_Y$ with respect to the bases (v_1, \ldots, v_k) and (w_1, \ldots, w_l) and representing $\overline{\alpha}$ with respect to the bases (v_1, \ldots, v_k) and (w_1, \ldots, w_l) and representing $\overline{\alpha}$ with respect to the bases $(v_{k+1} + Y, \ldots, v_n + Y)$ and $(w_{l+1} + Z, \ldots, w_m + Z)$ from this block matrix.

- 12. Let T, U, V, W be vector spaces over \mathbb{F} and let $\alpha: T \to U, \beta: V \to W$ be fixed linear maps. Show that the mapping $\Phi: \mathcal{L}(U, V) \to \mathcal{L}(T, W)$ which sends θ to $\beta \circ \theta \circ \alpha$ is linear. If the spaces are finite-dimensional and α and β have rank r and s respectively, find the rank of Φ .
- 13. Let *E* be a complex vector space of dimension $n \ge 1$ and $u \in \mathcal{L}(E)$ be nilpotent of order p ($u^p = 0$ and $u^{p-1} \ne 0$). Show that there exists a decomposition $E = F_1 \oplus \ldots \oplus F_p$ with $u(F_1) = \{0\}$ and for $j \ge 2$, u induces an injection of F_j to F_{j-1} . Moreover, for $1 \le j \le p$, $\operatorname{Ker}(u^j) = F_1 \oplus \ldots \oplus F_j$.
- 14. (i) Let \mathcal{G} be a subset of $\mathcal{M}_n(\mathbb{R})$ which is a group for the multiplication of matrices. Show that all elements of \mathcal{G} have the same rank p and that there exists a basis \mathcal{B} of \mathbb{R}^n in which any element of \mathcal{G} is represented by a matrix of the form $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ where A is $p \times p$.
 - (ii) Let M ∈ M_n(ℝ). Show that the following are equivalent:
 (a) M belongs to a group G as above.
 (b) M and M² have the same rank.
 (c) ℝⁿ = ImM ⊕ KerM.
- 15. Let E be a complex vector space of dimension n ≥ 1. Let f be an endomorphism of E. Show the existence and uniqueness of (F, G) vector subspaces of E such that:
 (a) F ⊕ G = E;
 - (b) F, G are stable by f;
 - (c) $f_{|F|}$ is nilpotent and $f_{|G|}$ is invertible.
 - (*Hint: consider the sequences* $F_k = \operatorname{Ker} f^k$ and $G_k = \operatorname{Im} f^k$.)

- 16. Let E be a complex vector space of dimension $n \ge 1$. Let f, g be two endomorphisms of E with fg = gf. Show that the following are equivalent:

 - (a) $\operatorname{Ker} f \cap \operatorname{Ker} g = \{0\};$ (b) $\operatorname{Im} f + \operatorname{Im} g = E;$ (c) there exists a finite set S such that $\forall t \in \mathbb{C} \backslash S, f + tg$ is invertible.