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1. Show that none of the following matrices are similar: 1 1 0
0 1 1
0 0 1

 ,

 1 1 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

 .

Is the matrix  1 1 1
0 1 1
0 0 1


similar to any of them? If so, which?

2. Find a basis with respect to which

(
0 −1
1 2

)
is in Jordan normal form. Hence compute

(
0 −1
1 2

)n
.

3. (a) Recall that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic
and minimal polynomials. Give an example to show that this is not so for 4× 4 complex matrices.
(b) Let A be a 5×5 complex matrix with A4 = A2 6= A. What are the possible minimal and characteristic
polynomials? If A is not diagonalisable, how many possible JNFs are there for A?

4. Let α be an endomorphism of the finite dimensional vector space V over F, with characteristic polynomial
χα(t) = tn + cn−1t

n−1 + · · ·+ c0. Show that det(α) = (−1)nc0 and tr(α) = −cn−1.

5. Let α be an endomorphism of the finite-dimensional vector space V , and assume that α is invertible.
Describe the eigenvalues and the characteristic and minimal polynomial of α−1 in terms of those of α.

6. Prove that that the inverse of a Jordan block Jm(λ) with λ 6= 0 has Jordan normal form a Jordan block
Jm(λ−1). For an arbitrary invertible square matrix A, describe the Jordan normal form of A−1 in terms
of that of A.

Prove that any square complex matrix is similar to its transpose.

7. Let V be a vector space of dimension n and α an endomorphism of V with αn = 0 but αn−1 6= 0. Show
that there is a vector y such that 〈y, α(y), α2(y), . . . , αn−1(y)〉 is a basis for V .

Show that if β is an endomorphism of V which commutes with α, then β = p(α) for some polynomial p.
[Hint: consider β(y).] What is the form of the matrix for β with respect to the above basis?

8. Let A be an n× n matrix all the entries of which are real. Show that the minimal polynomial of A over
the complex numbers has real coefficients.

9. Let V be a 4-dimensional vector space over R, and let {ξ1, ξ2, ξ3, ξ4} be the basis of V ∗ dual to the basis
{x1,x2,x3,x4} for V . Determine, in terms of the ξi, the bases dual to each of the following:
(a) {x2,x1,x4,x3} ;
(b) {x1, 2x2,

1
2x3,x4} ;

(c) {x1 + x2,x2 + x3,x3 + x4,x4} ;
(d) {x1,x2 − x1,x3 − x2 + x1,x4 − x3 + x2 − x1} .

10. Let Pn be the space of real polynomials of degree at most n. For x ∈ R define εx ∈ P ∗n by εx(p) = p(x).
Show that ε0, . . . , εn form a basis for P ∗n , and identify the basis of Pn to which it is dual.

11. Let α : V → V be an endomorphism of a finite dimensional complex vector space and let α∗ : V ∗ → V ∗

be its dual. Show that a complex number λ is an eigenvalue for α if and only if it is an eigenvalue for
α∗. How are the algebraic and geometric multiplicities of λ for α and α∗ related? How are the minimal
and characteristic polynomials for α and α∗ related?

S.J.Wadsley@dpmms.cam.ac.uk - 1 - November 2014



12. (a) Show that if x 6= y are vectors in the finite dimensional vector space V , then there is a linear
functional θ ∈ V ∗ such that θ(x) 6= θ(y).
(b) Suppose that V is finite dimensional. Let A,B ≤ V . Prove that A ≤ B if and only if Ao ≥ Bo.
Show that A = V if and only if Ao = {0}.

13. For A ∈ Matn,m(F) and B ∈ Matm,n(F), let τA(B) denote trAB. Show that, for each fixed A,
τA: Matm,n(F) → F is linear. Show moreover that the mapping A 7→ τA defines a linear isomorphism
Matn,m(F)→ Matm,n(F)∗.

14. Show that the dual of the space P of real polynomials is isomorphic to the space RN of all sequences of
real numbers, via the mapping which sends a linear form ξ : P → R to the sequence (ξ(1), ξ(t), ξ(t2), . . .).

In terms of this identification, describe the effect on a sequence (a0, a1, a2, . . .) of the linear maps dual
to each of the following linear maps P → P :
(a) The map D defined by D(p)(t) = p′(t).
(b) The map S defined by S(p)(t) = p(t2).
(c) The map E defined by E(p)(t) = p(t− 1).
(d) The composite DS.
(e) The composite SD.

Verify that (DS)∗ = S∗D∗ and (SD)∗ = D∗S∗.

The remaining two questions are based on non-examinable material

15. Let V be a vector space of finite dimension over a field F . Let α be an endomorphism of V and let
U be an α-invariant subspace of V ie a subspace such that α(U) ≤ U . Define α ∈ End(V/U) by
α(v + U) = α(v) + U . Check that α is a well-defined endomorphism of V/U .

Consider a basis 〈v1, . . . , vn〉 of V containing a basis 〈v1, . . . , vk〉 of U . Show that the matrix of α with

respect to 〈v1, . . . , vn〉 is

(
A C
0 B

)
, where A the matrix of the restriction αU :U → U of α to U with

respect to 〈v1, . . . , vk〉, and B the matrix of α with respect to 〈vk+1 + U, . . . , vn + U〉. Deduce that
χα = χαU

χα.

16. (Another proof of the Cayley Hamilton Theorem.) Assume that the Cayley Hamilton Theorem holds
for any endomorphism on any vector space over the field F of dimension less than n. Let V be a vector
space of dimension n and let α be an endomorphism of V . If U is a proper α-invariant subspace of V ,
use the previous question and the induction hypothesis to show that χα(α) = 0. If no such subspace
exists, show that there exists a basis 〈v, α(v), . . . αn−1(v)〉 of V . Show that α has matrix

0 −a0

1
. . . −a1
. . . 0

...
1 −an−1


with respect to this basis, for suitable ai ∈ F. Show that χα(t) = tn + an−1t

n−1 + · · · + a0 and that
χα(α)(v) = 0. Deduce that χα(α) = 0 as an element of End(V ).
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