Michaelmas Term 2008

Linear Algebra: Example Sheet 1 of 4

The first twelve questions cover the relevant part of the course and should ensure a good understanding. The remaining questions may or may not be harder; they should only be attempted after completion of the first part.

- 1. Let $\mathbb{R}^{\mathbb{R}}$ be the vector space of all functions $f:\mathbb{R}\to\mathbb{R}$, with addition and scalar multiplication defined pointwise. Which of the following sets of functions form a vector subspace of $\mathbb{R}^{\mathbb{R}}$?
 - (a) The set C of continuous functions.
 - (b) The set $\{f \in C : |f(t)| \le 1 \text{ for all } t \in [0,1]\}$.
 - (c) The set $\{f \in C : f(t) \to 0 \text{ as } t \to \infty\}$.
 - (d) The set $\{f \in C : f(t) \to 1 \text{ as } t \to \infty\}$.
 - (e) The set of solutions of the differential equation $\ddot{x}(t) + (t^2 3)\dot{x}(t) + t^4x(t) = 0$.
 - (f) The set of solutions of $\ddot{x}(t) + (t^2 3)\dot{x}(t) + t^4x(t) = \sin t$.
 - (g) The set of solutions of $(\dot{x}(t))^2 x(t) = 0$.
 - (h) The set of solutions of $(\ddot{x}(t))^4 + (x(t))^2 = 0$.
- 2. Suppose that the vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ form a basis for V. Which of the following are also bases?
 - (a) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n;$
 - (b) $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n + \mathbf{e}_1;$
 - (c) $\mathbf{e}_1 \mathbf{e}_2, \mathbf{e}_2 \mathbf{e}_3, \dots, \mathbf{e}_{n-1} \mathbf{e}_n, \mathbf{e}_n \mathbf{e}_1;$
 - (d) $\mathbf{e}_1 \mathbf{e}_n, \mathbf{e}_2 + \mathbf{e}_{n-1}, \dots, \mathbf{e}_n + (-1)^n \mathbf{e}_1.$
- 3. Show that a vector space V is finite dimensional if and only if every linearly independent subset $S \subset V$ is finite. Deduce that a subspace of a finite dimensional vector space is always finite dimensional. [Although it is true that every vector space V has a basis, we only proved this in lectures for V finite dimensional, so it would not be reasonable to quote the more general result in answering this question.]
- 4. Let T, U and W be subspaces of V.
 - (i) Show that $T \cup U$ is a subspace of V only if either $T \leq U$ or $U \leq T$.
 - (ii) Give explicit counter-examples to the following statements:

(a)
$$T + (U \cap W) = (T + U) \cap (T + W);$$
 (b) $(T + U) \cap W = (T \cap W) + (U \cap W).$

(iii) Show that each of the equalities in (ii) can be replaced by a valid inclusion of one side in the other.

- 5. For each of the following pairs of vector spaces (V, W) over \mathbb{R} , either give an isomorphism $V \to W$ or show that no such isomorphism can exist. (Here P denotes the space of polynomial functions $\mathbb{R} \to \mathbb{R}$, and C[a, b] denotes the space of continuous functions defined on the closed interval [a, b].)
 - (a) $V = \mathbb{R}^4$, $W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_2 + x_3 + x_4 + x_5 = 0 \}$. (b) $V = \mathbb{R}^5$, $W = \{ p \in P : \deg p \le 5 \}$.

 - (c) V = C[0, 1], W = C[-1, 1].
 - (d) $V = C[0, 1], W = \{f \in C[0, 1] : f(0) = 0, f \text{ continuously differentiable } \}.$
 - (e) $V = \mathbb{R}^2$, $W = \{$ solutions of $\ddot{x}(t) + x(t) = 0 \}$.
 - (f) $V = \mathbb{R}^4$, W = C[0, 1].
 - (g) (Harder:) V = P, $W = \mathbb{R}^{\mathbb{N}}$.
- 6. If α and β are linear maps from U to V show that $\alpha + \beta$ is linear. Give explicit counter-examples to the following statements:

(a) $\operatorname{Im}(\alpha + \beta) = \operatorname{Im}(\alpha) + \operatorname{Im}(\beta);$ (b) $\operatorname{Ker}(\alpha + \beta) = \operatorname{Ker}(\alpha) \cap \operatorname{Ker}(\beta).$

Show that each of these equalities can be replaced by a valid inclusion of one side in the other.

7. Let

$$U = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_3 + x_4 = 0, \ 2x_1 + 2x_2 + x_5 = 0 \}, \ W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_5 = 0, \ x_2 = x_3 = x_4 \}.$$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for U + W and show that

$$U + W = \{ \mathbf{x} \in \mathbb{R}^{5} : x_1 + 2x_2 + x_5 = x_3 + x_4 \}.$$

```
T.A.Fisher@dpmms.cam.ac.uk
```

15 October 2008

- 8. (i) Let U be a subspace of F^n . Show that there is a subset I of $\{1, 2, \ldots, n\}$ for which the subspace $W = \langle \{ \mathbf{e}_i : i \in I \} \rangle$ is a complementary subspace to U in F^n . (ii) Show that any two subspaces of the same dimension in a finite-dimensional vector space have a common complementary subspace. You may wish to consider first the case where the subspaces have dimension 1 less than the space.]
- 9. Let $\alpha: U \to V$ be a linear map between two finite dimensional vector spaces and let W be a vector subspace of U. Show that the restriction of α to W is a linear map $\alpha|_W: W \to V$ which satisfies

$$\mathbf{r}(\alpha) \ge \mathbf{r}(\alpha|_W) \ge \mathbf{r}(\alpha) - \dim(U) + \dim(W)$$
.

Give examples (with $W \neq U$) to show that either of the two inequalities can be an equality.

10. Let $\alpha : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by $\alpha : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find the matrix representing α relative to the basis $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ for both the domain and the range. Write down bases for the domain and range with respect to the basis α is the domain and range with respect to the basis α .

Write down bases for the domain and range with respect to which the matrix of α is the identity.

- 11. Let U_1, \ldots, U_k be subspaces of a vector space V and let B_i be a basis for U_i . Show that the following statements are equivalent:
 - (i) $U = \sum_{i} U_i$ is a direct sum, *i.e.* every element of U can be written uniquely as $\sum_{i} u_i$ with $u_i \in U_i$.

(ii)
$$U_j \cap \sum_{i \neq j} U_i = \{0\}$$
 for all j .

(iii) The B_i are pairwise disjoint and their union is a basis for $\sum_i U_i$.

Given an example where $U_i \cap U_j = \{0\}$ for all $i \neq j$, yet $U_1 + \ldots + U_k$ is not a direct sum.

- 12. Let U and V be finite dimensional vector spaces over F, with U not the zero space. Let V_1 and V_2 be subspaces of V. Show that $W_i = \{ \alpha \in L(U, V) : \alpha(U) \leq V_i \}$ is a subspace of L(U, V). Prove that $V = V_1 \oplus V_2$ if and only if $L(U, V) = W_1 \oplus W_2$.
- 13. X and Y are linearly independent subsets of a vector space V; no member of X is expressible as a linear combination of members of Y, and no member of Y is expressible as a linear combination of members of X. Is the set $X \cup Y$ necessarily linearly independent? Give a proof or counterexample.
- 14. Let U be a proper subspace of the finite-dimensional vector space V. Show there is a basis for V containing no element of U.
- 15. Let $\operatorname{Mat}_{m,n}(F)$ be the space of m by n matrices over a field F. We say $A, B \in \operatorname{Mat}_{m,n}(F)$ are equivalent if there exist invertible matrices P and Q such that $B = Q^{-1}AP$. Check this is an equivalence relation. Show that matrices are equivalent if and only if they have the same rank. (The "only if" part will be proved in lectures.)
- 16. (Another version of the Steinitz Exchange Lemma.) Let $\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_r\}$ and $\{\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_s\}$ be linearly independent subsets of a vector space V, and suppose $r \leq s$. Show that it is possible to choose distinct indices i_1, i_2, \ldots, i_r from $\{1, 2, \ldots, s\}$ such that, if we delete each \mathbf{y}_{i_j} from Y and replace it by \mathbf{x}_j , the resulting set is still linearly independent. Deduce that any two maximal linearly independent subsets of a finite-dimensional vector space have the same size.
- 17. Let \mathbb{F}_p be the field of integers modulo p, where p is a prime number. Let V be a vector space of dimension n over \mathbb{F}_p . How many vectors are there in V? How many (ordered) bases? How many automorphisms does V have? How many k-dimensional subspaces are there in V?