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Linear Algebra: Non-degenerate Bilinear Forms

These notes cover some material related to the linear algebra course, marginally beyond
that specified in the schedules. This includes the classification of skew-symmetric bilinear
forms (recall that symmetric bilinear forms were covered in lectures). The last section
of the course is on inner products, i.e. positive definite symmetric bilinear forms (case
F = R), respectively positive definite Hermitian forms (case F = C). In these notes we
generalise some of the results of that section to non-degenerate forms.

1. Non-degeneracy

Let V and W be finite dimensional vector spaces over a field F . Recall that V ∗ =
L(V, F ) is the dual space of V . If ψ : V ×W → F is a bilinear form then there are linear
maps

ψL : V →W ∗ ; v 7→ (w 7→ ψ(v, w))

ψR : W → V ∗ ; w 7→ (v 7→ ψ(v, w)).

Linearity of ψ in the second argument shows that ψL(v) : W → F is linear, and hence an
element of W ∗, whereas linearity of ψ in the first argument shows that ψL itself is linear.
(The same comments apply to ψR with obvious modifications.)

Theorem 1.1. Any two of the following statements implies the third.

(i) Ker(ψL) = {0}, i.e. ψ(v, w) = 0 for all w ∈W implies v = 0.
(ii) Ker(ψR) = {0}, i.e. ψ(v, w) = 0 for all v ∈ V implies w = 0.
(iii) dimV = dimW .

Proof: Statement (i) shows that dimV ≤ dimW ∗ = dimW , and likewise (ii) shows that
dimW ≤ dimV ∗ = dimV . So (i) and (ii) imply dimV = dimW .

Now suppose that (i) and (iii) hold. Then ψL : V → W ∗ is an isomorphism. Pick a
basis v1, . . . , vn for V . Then ψL(v1), . . . , ψL(vn) is a basis for W ∗. Let w1, . . . , wn be the
dual basis for W . Then ψ(vi, wj) = ψL(vi)(wj) = δij . If w ∈ Ker(ψR), say w =

∑
λjwj

for some λj ∈ F , then λi = ψ(vi, w) = ψR(w)(vi) = 0 for all i. Hence w = 0 and this
proves (ii). The deduction of (iii) from (i) and (ii) is similar. �

Definition 1.2. A bilinear form ψ : V × W → F is non-degenerate if it satisfies the
conditions of Theorem 1.1.

Equivalently, ψ is non-degenerate if and only if rank(ψ) = dimV = dimW . Recall that
the rank of ψ is the rank of any matrix representing it.

Remark 1.3. The set of bilinear forms V × V → F under pointwise operations form
a vector space over F . We may identify this space with L(V, V ∗) via ψ 7→ ψL. The
non-degenerate bilinear forms correspond to the isomorphisms from V to V ∗.
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2. Orthogonal complements

Let ψ : V × V → F be a bilinear form. We assume that either ψ is symmetric, i.e.
ψ(u, v) = ψ(v, u) for all u, v ∈ V , or ψ is skew-symmetric, i.e. ψ(u, v) = −ψ(v, u) for all
u, v ∈ V . Then for W ≤ V we define the orthogonal subspace

W⊥ = {v ∈ V : ψ(v, w) = 0 for all w ∈W}.

The restriction of ψ to W (denoted ψ|W although we really mean ψ|W×W ) is non-
degenerate if and only if W ∩W⊥ = {0}.

Remark 2.1. It is possible for the restriction of a non-degenerate form to be degenerate.

For example let ψ : R2 × R2 → R be given by (u, v) 7→ uT

(
0 1
1 0

)
v, and let W = 〈e1〉.

Then ψ is non-degenerate but ψ|W is degenerate. This is in contrast to the situation for
positive definite forms: the restriction of a positive definite form is always positive definite.

Theorem 2.2. Let ψ : V × V → F be bilinear and either symmetric or skew-symmetric.
Let W ≤ V be a subspace. Then dim(W ) + dim(W⊥) = dim(V ) + dim(W ∩ V ⊥).

Proof: Let α be the restriction of ψR to W , i.e.

α : W → V ∗

w 7→ (v 7→ ψ(v, w)).

The rank-nullity theorem says

dim(W ) = dim Ker(α) + dim Im(α).

But Ker(α) = {w ∈W : ψ(v, w) = 0 for all v ∈ V } = W ∩ V ⊥ and

Im(α)◦ = {v ∈ V : θ(v) = 0 for all θ ∈ Im(α)}
= {v ∈ V : α(w)(v) = 0 for all w ∈W}
= {v ∈ V : ψ(v, w) = 0 for all w ∈W}

= W⊥.

Since for U ≤ V we have dim(U) + dim(U◦) = dimV it follows that

dim(W ) = dim(W ∩ V ⊥) + (dim(V )− dim(W⊥)).

�

Corollary 2.3. Let ψ : V × V → F be bilinear and either symmetric or skew-symmetric.
Let W ≤ V be a subspace. Then

ψ|W is non-degenerate ⇐⇒ V = W ⊕W⊥.

Proof: “⇒” Since ψ|W is non-degenerate we have W ∩W⊥ = {0}. Therefore W +W⊥

is a direct sum. Then dim(W ⊕W⊥) = dim(W ) + dim(W⊥) ≥ dim(V ) by Theorem 2.2.
Hence V = W ⊕W⊥.
“⇐” If V = W ⊕W⊥ then W ∩W⊥ = {0} and ψ|W is non-degenerate. �

We used a special case of Corollary 2.3 (with W a 1-dimensional subspace) in the proof
that a symmetric bilinear form can be diagonalised.
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3. Skew-symmetric forms

We assume that F is a field of characteristic not 2.

Definition 3.1. A bilinear form ψ : V ×V → F is alternating if ψ(v, v) = 0 for all v ∈ V .

Lemma 3.2. Let ψ : V × V → F be a bilinear form. Then ψ is alternating if and only if
it is skew-symmetric.

Proof: “⇒” By bilinearity

ψ(u+ v, u+ v) = ψ(u, u) + ψ(u, v) + ψ(v, u) + ψ(v, v).

Since ψ is alternating this reduces to ψ(u, v) = −ψ(v, u), i.e. ψ is skew-symmetric.
“⇐” Since ψ(v, v) = −ψ(v, v) (and 2 6= 0 in F ) we get ψ(v, v) = 0. �

Theorem 3.3. Let V be a finite dimensional vector space over F and let ψ : V × V → F
be an alternating bilinear form. Then there exists a basis B for V such that

[ψ]B =



0 1
−1 0 0

0 1
−1 0 0

. . .
0 0 1

−1 0

0 0


.

In particular the rank of ψ is even.

Proof: The proof is by induction on dimV . If ψ is the zero form then we are done.
Otherwise pick v1, v2 ∈ V with ψ(v1, v2) 6= 0. Then ψ alternating implies v1 and v2
are linearly independent. Replacing v2 by cv2 for some non-zero c ∈ F we may assume
that ψ(v1, v2) = 1. Put W = 〈v1, v2〉. Then ψ|W has matrix

(
0 1
−1 0

)
. By Corollary 2.3

(or a direct argument of the sort we used in the proof for symmetric forms) we have
V = W ⊕W⊥. Applying the induction hypothesis to ψ|W⊥ gives a basis v3, . . . , vn for
W⊥. Then v1, . . . , vn is the required basis for V . �

Corollary 3.4. If a finite dimensional vector space V admits a non-degenerate alternating
bilinear form then dimV is even.

4. Adjoints

Although we will meet adjoints in the section of the course on inner products, they can
be defined more generally for non-degenerate bilinear forms. As before V will be a finite
dimensional vector space over F .

Lemma 4.1. Let φ and ψ be bilinear forms on V with ψ non-degenerate. Then there
exists a unique α ∈ End(V ) such that

φ(v, w) = ψ(v, α(w))

for all v, w ∈ V .
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Proof: There are linear maps

φR : V → V ∗ ; w 7→ (v 7→ φ(v, w))

ψR : V → V ∗ ; w 7→ (v 7→ ψ(v, w)).

Since ψ is non-degenerate, ψR is an isomorphism. We put α = ψ−1
R ◦ φR. Then

ψR ◦ α = φR

=⇒ ψR(α(w))(v) = φR(w)(v) for all v, w ∈ V
=⇒ ψ(v, α(w)) = φ(v, w) for all v, w ∈ V.

Uniqueness: Suppose α1, α2 ∈ End(V ) are solutions. Then ψ(v, α1(w)) = φ(v, w) =
ψ(v, α2(w)) for all v, w ∈ V . Then ψ(v, α1(w) − α2(w)) = 0 for all v, w ∈ V , and by
non-degeneracy of ψ it follows that α1 = α2. �

Theorem 4.2. Let ψ : V × V → F be a non-degenerate bilinear form. For each α ∈
End(V ) there exists a unique α∗ ∈ End(V ) such that

ψ(α(v), w) = ψ(v, α∗(w))

for all v, w ∈ V . We call α∗ the adjoint of α.

Proof: Define φ : V ×V → F by (v, w) 7→ ψ(α(v), w). Then φ is bilinear and Lemma 4.1
constructs α∗. �

Remark 4.3. If ψ is non-degenerate then ψR : V → V ∗ is an isomorphism. If we identify
V and V ∗ via this map then the adjoint α∗ works out as being the same as the dual map
(as defined in the section on dual spaces, and also denoted α∗.)


