

Linear Algebra: Preliminaries

This is NOT one of the official example sheets of the course.

This sheet contains a few questions to revise some of the linear algebra covered in the IA Algebra and Geometry course last year. It is not one of the official example sheets - there will be four of these, the first one appearing soon. You may wish to revisit exercises 1 to 8 on Professor Körner's sheet 1 for Algebra and Geometry IA - this is still available on the web, if you lost your copy. A few other examples appear below. You may wish to look at these soon, to get some early practice. A page of notes for revision, compiled by a previous lecturer, Professor Hyland, appears on the website for the course, under the heading Recapitulation. This and further example sheets are also taken largely from ones prepared a couple of years ago by Professor Hyland.

1. Let U be the subset of \mathbb{R}^3 consisting of all vectors \mathbf{x} satisfying the various conditions below. In which of these cases is U a vector space over \mathbb{R} ?
 - (a) $x_1 > 0$.
 - (b) either $x_1 = 0$ or $x_2 = 0$.
 - (c) $x_1 + x_2 = 0$.
 - (d) $x_1 + x_2 = 1$.
 - (e) $x_1 + x_2 + x_3 = 0$ and $x_1 - x_3 = 0$.
2. For each of the vector spaces found in the question above, what is the dimension?
3. Show that the four vectors $(1, 0, 0)$, $(0, 1, 0)$, $(0, 0, 1)$ and $(1, 1, 1)$ form a linearly dependent set, but that any proper subset of them is linearly independent.
4. Which of the following are bases for \mathbb{R}^3 ?

$$(a) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; \quad (b) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

5. Find the ranks of the following matrices A , and give bases for the kernel and image of the linear maps $\mathbf{x} \mapsto A\mathbf{x}$.
6. Find a basis with respect to which $\begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$ is diagonal. Hence compute the n th power $\begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}^n$.
7. For some of the matrices A in question 5, calculate its characteristic polynomial χ_A and check that $\chi_A(A) = 0$.
8. For what values of a and b does the system of simultaneous linear equations

$$\begin{aligned} x + y + z &= 1 \\ ax + 2y + z &= b \\ a^2x + 4y + z &= b^2 \end{aligned}$$

have (i) a unique solution, (ii) no solution, (iii) many solutions? When solutions do exist, find them.

Comments, corrections and queries can be sent to me at saxl@dpmms.cam.ac.uk.