Michaelmas Term 2003 J. M. E. Hyland

Linear Algebra: Example Sheet 1

The first 12 questions cover the course and should ensure good understanding of the course: the remainder are provided for amusement, or as a challenge, according to taste.

- 1. Suppose that T and U are subspaces of the vector space V. Show that $T \cup U$ also a subspace of V if and only if either $T \leq U$ or $U \leq T$.
- 2. Let T, U, W be subspaces of V.
 - (i) Give explicit counter-examples to the following statements.
 - (a) $T + (U \cap W) = (T + U) \cap (T + W)$. (b) $(T + U) \cap W = (T \cap W) + (U \cap W)$.
 - (ii) Show in both (a) and (b) that the equality can be replaced by a valid inclusion of one side in the other.
- 3. Show that if $T \leq W$, then $(T+U) \cap W = (T \cap W) + (U \cap W)$. Deduce that in general one has $T \cap (U + (T \cap W)) = (T \cap U) + (T \cap W)$.
- 4. If α and β are linear maps from U to V, show that $\alpha + \beta$ is linear and that

$$\operatorname{Im}(\alpha + \beta) \leq \operatorname{Im}\alpha + \operatorname{Im}\beta$$
 and $\ker(\alpha + \beta) \geq \ker \alpha \cap \ker \beta$.

Show by example that each inclusion may be strict.

- 5. Suppose that $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is a base for V. Which of the following are also bases?
 - (a) $\{\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n\}.$
 - (b) $\{\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_2 + \mathbf{e}_3, \dots, \mathbf{e}_{n-1} + \mathbf{e}_n, \mathbf{e}_n + \mathbf{e}_1\}.$
 - (c) $\{\mathbf{e}_1 \mathbf{e}_2, \mathbf{e}_2 \mathbf{e}_3, \dots, \mathbf{e}_{n-1} \mathbf{e}_n, \mathbf{e}_n\}.$
 - (d) $\{\mathbf{e}_1 \mathbf{e}_2, \mathbf{e}_2 \mathbf{e}_3, \dots, \mathbf{e}_{n-1} \mathbf{e}_n, \mathbf{e}_n \mathbf{e}_1\}.$
 - (e) $\{\mathbf{e}_1 \mathbf{e}_n, \mathbf{e}_2 + \mathbf{e}_{n-1}, \dots, \mathbf{e}_n + (-1)^n \mathbf{e}_1\}.$
- 6. For each of the following pairs of vector spaces (V, W) over \mathbb{R} , either give an isomorphism $V \to W$ or show that no such isomorphism can exist. (Here P denotes the space of polynomial functions $\mathbb{R} \to \mathbb{R}$, and C[a,b] denotes the space of continuous functions defined on the closed interval [a,b].)
 - (a) $V = \mathbb{R}^4$, $W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_2 + x_3 + x_4 + x_5 = 0 \}$.
 - (b) $V = \mathbb{R}^5$, $W = \{ p \in P : \deg p \le 5 \}$.
 - (c) V = C[0, 1], W = C[-1, 1].
 - (d) $V = C[0,1], W = \{f \in C[0,1] : f(0) = 0, f \text{ continuously differentiable } \}.$
 - (e) $V = \mathbb{R}^2$, $W = \{\text{solutions of } \ddot{x}(t) + x(t) = 0\}$. (f) $V = \mathbb{R}^4$, W = C[0, 1].

 - (g) V = P, $W = \mathbb{R}^{\mathbb{N}}$.
- 7. Let

$$U = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_3 + x_4 = 0, \ 2x_1 + 2x_2 + x_5 = 0 \},$$

$$W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + x_5 = 0, \ x_2 = x_3 = x_4 \}.$$

Find bases for U and W containing a basis for $U \cap W$ as a subset. Give a basis for U + W and show that

$$U + W = \{ \mathbf{x} \in \mathbb{R}^5 : x_1 + 2x_2 + x_5 = x_3 + x_4 \}.$$

8. Find the ranks of the following matrices A, and give bases for the kernel and image of the linear maps $\mathbf{x} \mapsto A\mathbf{x}$.

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad ; \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad ; \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

9. Let $\alpha:U\to V$ be a linear map between two finite dimensional vector spaces and let W be a vector subspace of U. Show that the restriction of α to W is a linear map $\alpha|_W:W\to V$ which satisfies

$$r(\alpha) \ge r(\alpha|_W) \ge r(\alpha) - \dim(U) + \dim(W)$$
.

Give examples to show that either of the two inequalities can be an equality.

10. Let
$$\alpha : \mathbb{R}^3 \to \mathbb{R}^3$$
 be the linear map given by $\alpha : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find the matrix representing α relative to the base $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ for both the domain and the range.

Write down bases for the domain and range with respect to which the matrix of α is the identity.

11. Find the reduced column echelon form of the matrices:

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 1 & 1 \\ -1 & 1 & -1 & 0 \end{pmatrix}; \qquad \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 0 \end{pmatrix};$$

and describe the spaces spanned by their columns. In case the matrix is invertible give its inverse.

- 12. Let Y and Z be subspaces of the finite dimensional vector spaces V and W respectively. Show that $R = \{\theta \in \mathcal{L}(V, W) : \theta(\mathbf{x}) \in Z \text{ for all } \mathbf{x} \in Y\}$ is a subspace of $\mathcal{L}(V, W)$. What is the dimension of R?
- 13. Let S be the vector space of real sequences $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ and define a map $\Delta : S \to S$ by

$$\Delta: \mathbf{x} \mapsto \mathbf{y}$$
 where $y_n = x_{n+1} - x_n$.

Show that Δ is linear and describe its kernel and image. Similarly describe the kernel and image of Δ^2 (the composite of Δ with itself). What about Δ^3 ?

- 14. X and Y are linearly independent subsets of a vector space V; no member of X is expressible as a linear combination of members of Y, and no member of Y is expressible as a linear combination of members of X. Is the set $X \cup Y$ necessarily linearly independent? Give a proof or counterexample.
- 15. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r\}$ and $\{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_s\}$ be linearly independent subsets of a vector space V, and suppose $r \leq s$. Show that it is possible to choose distinct indices i_1, i_2, \dots, i_r from $\{1, 2, \dots, s\}$ such that, if we delete each \mathbf{y}_{i_j} from Y and replace it by \mathbf{x}_j , the resulting set is still linearly independent.
- 16. Let U be a vector subspace of \mathbb{R}^N (where N is finite). Show that there is a finite subset I of $\{1, 2, ..., N\}$ for which the subspace $W = \langle \{\mathbf{e}_i : i \in I\} \rangle$ is a complementary subspace to U in \mathbb{R}^N .
- 17. Let $\alpha: U \to V$ and $\beta: V \to W$ be maps between finite dimensional vector spaces, and suppose that $\ker(\beta) = \operatorname{Im}(\alpha)$. Show that bases may be chosen for U, V and W with respect to which α and β have matrices

$$\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$
 and $\begin{pmatrix} O & O \\ O & I_{n-r} \end{pmatrix}$

respectively, where $\dim(V) = n$, $r = r(\alpha)$ and I_k is the identity $k \times k$ matrix.

- 18. (i) Let α: V → V be an endomorphism of a finite dimensional vector space V. Set r_i = r(αⁱ). Show that r_i ≥ r_{i+1} and that (r_i r_{i+1}) ≥ (r_{i+1} r_{i+2}).
 (ii) Suppose that dim(V) = 5, α³ = 0, but α² ≠ 0. What possibilities are there for r(α) and r(α²)?
- 19. Let T, U, V, W be vector spaces over the same field and let $\alpha : T \to U, \beta : V \to W$ be fixed linear maps. Show that the mapping $\Phi : \mathcal{L}(U, V) \to \mathcal{L}(T, W)$ which sends θ to $\beta \circ \theta \circ \alpha$ is linear. If the spaces are finite-dimensional and α and β have rank r and s respectively, find the rank of Φ .
- 20. An $n \times n$ magic square is a square matrix whose rows, columns and two diagonals all sum to the same quantity. Find the dimension of the space of $n \times n$ magic squares.

Comments, corrections and queries can be sent to me at m.hyland@dpmms.cam.ac.uk.