
Lent Term 2019 T.A. Fisher

Groups Rings and Modules: Example Sheet 3 of 4

All rings in this course are commutative with a 1.

1. Show that Z[
√
−2] and Z[ω] are Euclidean domains, where ω = 1

2
(−1 +

√
−3). Show

also that the usual Euclidean function φ(r) = N(r) does not make Z[
√
−3] into a

Euclidean domain. Could there be some other Euclidean function φ making Z[
√
−3]

into a Euclidean domain?

2. Show that the ideal (2, 1 +
√
−7) in Z[

√
−7] is not principal.

3. Find an element of Z[
√
−17] that is a product of two irreducibles and also a product

of three irreducibles.

4. Determine whether or not the following rings are fields, PIDs, UFDs, integral domains:

Z[X], Z[X]/(X2+1), Z[X]/(2, X2+1), Z[X]/(2, X2+X+1), Z[X]/(3, X3−X+1).

5. Determine which of the following polynomials are irreducible in Q[X]:

X4 + 2X + 2, X4 + 18X2 + 24, X3 − 9, X3 +X2 +X + 1, X4 + 1, X4 + 4.

6. Let R be an integral domain. The greatest common divisor (gcd) of non-zero elements
a and b in R is an element d in R such that d divides both a and b, and if c divides
both a and b then c divides d.

(i) Show that the gcd of a and b, if it exists, is unique up to multiplication by a unit.

(ii) In lectures we have seen that, if R is a UFD, the gcd of two elements exists. Give
an example to show that this is not always the case in an integral domain.

(iii) Show that if R is a PID, the gcd of elements a and b exists and can be written as
ra + sb for some r, s ∈ R. Give an example to show that this is not always the
case in a UFD.

(iv) Explain briefly how, if R is a Euclidean domain, the Euclidean algorithm can be
used to find the gcd of any two non-zero elements. Use the algorithm to find the
gcd of 11 + 7i and 18− i in Z[i].

7. Find all ways of writing the following integers as sums of two squares: 221, 209 ×
221, 121× 221, 5× 221.

8. By considering factorisations in Z[
√
−2], show that the only integer solutions to the

equation x2 + 2 = y3 are x = ±5, y = 3.

9. Let R be any ring. Show that the ring R[X] is a principal ideal domain if and only if
R is a field. If I and J are ideals in a ring R then must the set {ab : a ∈ I, b ∈ J} also
be an ideal in R?

10. Exhibit an integral domain R and a (non-zero, non-unit) element of R that is not a
product of irreducibles.
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11. Let Fq be a finite field with q elements.

(i) Show that the prime subfield K (that is, the smallest subfield) of Fq has p elements
for some prime number p. Show that Fq is a vector space over K and deduce that
q = pk, for some k.

(ii) Show that the multiplicative group of the non-zero elements of Fq is cyclic. Deduce
that if q = p2 then SL2(Fp) contains an element of order p+ 1.

Further Questions

12. (i) Consider the polynomial f = X3Y + X2Y 2 + Y 3 − Y 2 − X − Y + 1 in C[X, Y ].
Write it as an element of (C[X])[Y ], that is collect together terms in powers of Y ,
and then use Eisenstein’s criterion to show that f is prime in C[X, Y ].

(ii) Let F be any field. Show that the polynomial f = X2 + Y 2 − 1 is irreducible in
F [X, Y ], unless F has characteristic 2. What happens in that case?

13. Show that the subring Z[
√

2] of R is a Euclidean domain. Show that the units are
±(1±

√
2)n for n > 0.

14. If a UFD has at least one irreducible, must it have infinitely many (pairwise non-
associate) irreducibles?

15. Let V be a 2-dimensional vector space over a field Fq of q elements, let Ω be the set of
its 1-dimensional subspaces.

(i) Show that Ω has size q + 1 and GL2(Fq) acts on it. Show that the kernel Z of
this action consists of scalar matrices and the group PGL2(Fq) = GL2(Fq)/Z has
order q(q2 − 1). Show that the group PSL2(Fq) obtained similarly from SL2(Fq)
has order q(q2 − 1)/d with d = gcd(q − 1, 2).

(ii) Show that Ω may be identified with the set Fq ∪ {∞} in such a way that GL2(Fq)
acts on Ω as the group of Möbius transformations z 7→ az+b

cz+d
.

16. Show that the groups SL2(F4) and PSL2(F5) defined above both have order 60. Use
this and some questions from Example Sheet 1 to show that they are both isomorphic
to the alternating group A5. Show that SL2(F5) and PGL2(F5) both have order 120,
that SL2(F5) is not isomorphic to S5, but PGL2(F5) is.

[You may find it helpful to show, using the Cayley-Hamilton theorem or otherwise,
that the order of an element I 6= A ∈ SL2(F4) is uniquely determined by its trace.]
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