Groups Rings and Modules: Example Sheet 2 of 4

All rings in this course are commutative with a 1.

1. Let $\omega=\frac{1}{2}(-1+\sqrt{-3}) \in \mathbb{C}$, let $R=\{a+b \omega: a, b \in \mathbb{Z}\}$, and let $F=\{a+b \omega: a, b \in \mathbb{Q}\}$. Show that R is a subring of \mathbb{C}, and that F is a subfield of \mathbb{C}. What are the units of R ?
2. An element r of a (non-zero) ring R is called nilpotent if $r^{n}=0$ for some n.
(i) What are the nilpotent elements of $\mathbb{Z} / 6 \mathbb{Z}$? Of $\mathbb{Z} / 8 \mathbb{Z}$? Of $\mathbb{Z} / 24 \mathbb{Z}$? Of $\mathbb{Z} / 420 \mathbb{Z}$?
(ii) Show that if r is nilpotent then r is not a unit, but $1+r$ and $1-r$ are units.
(iii) Show that the set of nilpotent elements form an ideal N in R. What are the nilpotent elements in the quotient ring R / N ?
3. Let r be an element of a ring R. Show that the polynomial $1+r X \in R[X]$ is a unit if and only if r is nilpotent. Is it possible for the polynomial $1+X$ to be a product of two non-units?
4. Let $I_{1} \subset I_{2} \subset I_{3} \subset \cdots$ be ideals in a ring R. Show that the union $I=\bigcup_{n=1}^{\infty} I_{n}$ is also an ideal. If each I_{n} is proper, explain why I must be proper.
5. Show that if I and J are ideals in the ring R, then so is $I \cap J$, and the quotient ring $R /(I \cap J)$ is isomorphic to a subring of the product $R / I \times R / J$. Show further that if there exist $x \in I$ and $y \in J$ with $x+y=1$ then $R /(I \cap J) \cong R / I \times R / J$. What does this result say when $R=\mathbb{Z}$?
6. Let R be an integral domain. Show that a polynomial in $R[X]$ of degree d can have at most d roots. Deduce that the natural ring homomorphism from $R[X]$ to the ring of all functions $R \rightarrow R$ is injective if and only if R is infinite. Give also an example of a monic quadratic polynomial in $(\mathbb{Z} / 8 \mathbb{Z})[X]$ that has more than two roots.
7. Write down a prime ideal in $\mathbb{Z} \times \mathbb{Z}$ that is not maximal. Explain why in a finite ring all prime ideals are maximal.
8. Explain why, for p a prime number, there is a unique ring of order p. How many rings are there of order 4? [You should find that all but one of these rings is isomorphic to $\mathbb{F}_{2}[X] /\left(X^{2}+a X+b\right)$ for some $a, b \in \mathbb{F}_{2}$, where $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ is the field with 2 elements.]
9. Let R be an integral domain and F be its field of fractions. Suppose that $\phi: R \rightarrow K$ is an injective ring homomorphism from R to a field K. Show that ϕ extends to an injective homomorphism $\Phi: F \rightarrow K$. What happens if we do not assume that ϕ is injective?
10. An element r of a ring R is called idempotent if $r^{2}=r$.
(i) What are the idempotent elements of $\mathbb{Z} / 6 \mathbb{Z}$? Of $\mathbb{Z} / 8 \mathbb{Z}$? Of $\mathbb{Z} / 24 \mathbb{Z}$? Of $\mathbb{Z} / 420 \mathbb{Z}$?
(ii) Show that if r is idempotent then so is $r^{\prime}=1-r$, and that $r r^{\prime}=0$. Show also that the ideal (r) is naturally a ring, and that R is isomorphic as a ring to $(r) \times\left(r^{\prime}\right)$.
11. Let F be a field, and let $R=F[X, Y]$ be the polynomial ring in two variables.
(i) Let I be the principal ideal $(X-Y)$ in R. Show that $R / I \cong F[X]$.
(ii) Describe R / I when $I=\left(X^{2}+Y\right)$.
(iii) Describe R / I when $I=\left(X^{2}-Y^{2}\right)$. Is it an integral domain? Does it have nilpotent or idempotent elements?

Further Questions

12. Give an example of an abelian group which is not the additive group of some ring; is every abelian group the additive group of some ideal in some ring?
13. Suppose a ring R has the property that for each $x \in R$ there is a $n \geqslant 2$ such that $x^{n}=x$. Show that every prime ideal of R is maximal.
14. This question illustrates a construction of the real numbers, so you should avoid mentioning them in your answer.
A sequence $\left\{a_{n}\right\}$ of rational numbers is a Cauchy sequence if $\left|a_{n}-a_{m}\right| \rightarrow 0$ as $m, n \rightarrow \infty$, and $\left\{a_{n}\right\}$ is a null sequence if $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Quoting any standard results from Analysis, show that the set of Cauchy sequences with componentwise addition and multiplication form a ring C, and that the null sequences form a maximal ideal N.
Deduce that C / N is a field, which contains a subfield which may be identified with \mathbb{Q}. Explain briefly why the equation $x^{2}=2$ has a solution in this field.
15 . Let ϖ be a set of prime numbers. Write \mathbb{Z}_{ϖ} for the collection of all rationals m / n (in lowest terms) such that the only prime factors of the denominator n are in ϖ.
(i) Show that \mathbb{Z}_{ϖ} is a subring of the field \mathbb{Q} of rational numbers.
(ii) Show that any subring R of \mathbb{Q} is of the form \mathbb{Z}_{ϖ} for some set ϖ of primes.
(iii) Given (ii), what are the maximal subrings of \mathbb{Q} ?
15. (i) Show that the set $\mathcal{P}(S)$ of all subsets of a given set S is a ring with respect to the operations of symmetric difference and intersection. Describe the principal ideals in this ring. Show that the ideal (A, B) generated by elements A, B is in fact principal.
(ii) A ring R is called Boolean if every element of R is idempotent. Prove that every finite Boolean ring is isomorphic to a power-set ring $\mathcal{P}(S)$ for some set S. Give an example to show that this need not remain true for infinite Boolean rings.
