Lent Term 2019

Groups Rings and Modules: Example Sheet 2 of 4

All rings in this course are commutative with a 1.

- 1. Let $\omega = \frac{1}{2}(-1+\sqrt{-3}) \in \mathbb{C}$, let $R = \{a+b\omega : a, b \in \mathbb{Z}\}$, and let $F = \{a+b\omega : a, b \in \mathbb{Q}\}$. Show that R is a subring of \mathbb{C} , and that F is a subfield of \mathbb{C} . What are the units of R?
- 2. An element r of a (non-zero) ring R is called *nilpotent* if $r^n = 0$ for some n.
 - (i) What are the nilpotent elements of $\mathbb{Z}/6\mathbb{Z}$? Of $\mathbb{Z}/8\mathbb{Z}$? Of $\mathbb{Z}/24\mathbb{Z}$? Of $\mathbb{Z}/420\mathbb{Z}$?
 - (ii) Show that if r is nilpotent then r is not a unit, but 1 + r and 1 r are units.
 - (iii) Show that the set of nilpotent elements form an ideal N in R. What are the nilpotent elements in the quotient ring R/N?
- 3. Let r be an element of a ring R. Show that the polynomial $1 + rX \in R[X]$ is a unit if and only if r is nilpotent. Is it possible for the polynomial 1 + X to be a product of two non-units?
- 4. Let $I_1 \subset I_2 \subset I_3 \subset \cdots$ be ideals in a ring R. Show that the union $I = \bigcup_{n=1}^{\infty} I_n$ is also an ideal. If each I_n is proper, explain why I must be proper.
- 5. Show that if I and J are ideals in the ring R, then so is $I \cap J$, and the quotient ring $R/(I \cap J)$ is isomorphic to a subring of the product $R/I \times R/J$. Show further that if there exist $x \in I$ and $y \in J$ with x + y = 1 then $R/(I \cap J) \cong R/I \times R/J$. What does this result say when $R = \mathbb{Z}$?
- 6. Let R be an integral domain. Show that a polynomial in R[X] of degree d can have at most d roots. Deduce that the natural ring homomorphism from R[X] to the ring of all functions $R \to R$ is injective if and only if R is infinite. Give also an example of a monic quadratic polynomial in $(\mathbb{Z}/8\mathbb{Z})[X]$ that has more than two roots.
- 7. Write down a prime ideal in $\mathbb{Z} \times \mathbb{Z}$ that is not maximal. Explain why in a finite ring all prime ideals are maximal.
- 8. Explain why, for p a prime number, there is a unique ring of order p. How many rings are there of order 4? [You should find that all but one of these rings is isomorphic to $\mathbb{F}_2[X]/(X^2 + aX + b)$ for some $a, b \in \mathbb{F}_2$, where $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ is the field with 2 elements.]
- 9. Let R be an integral domain and F be its field of fractions. Suppose that $\phi : R \to K$ is an injective ring homomorphism from R to a field K. Show that ϕ extends to an injective homomorphism $\Phi : F \to K$. What happens if we do not assume that ϕ is injective?
- 10. An element r of a ring R is called *idempotent* if $r^2 = r$.
 - (i) What are the idempotent elements of $\mathbb{Z}/6\mathbb{Z}$? Of $\mathbb{Z}/8\mathbb{Z}$? Of $\mathbb{Z}/24\mathbb{Z}$? Of $\mathbb{Z}/420\mathbb{Z}$?
 - (ii) Show that if r is idempotent then so is r' = 1 r, and that rr' = 0. Show also that the ideal (r) is naturally a ring, and that R is isomorphic as a ring to $(r) \times (r')$.

- 11. Let F be a field, and let R = F[X, Y] be the polynomial ring in two variables.
 - (i) Let I be the principal ideal (X Y) in R. Show that $R/I \cong F[X]$.
 - (ii) Describe R/I when $I = (X^2 + Y)$.
 - (iii) Describe R/I when $I = (X^2 Y^2)$. Is it an integral domain? Does it have nilpotent or idempotent elements?

Further Questions

- 12. Give an example of an abelian group which is not the additive group of some ring; is every abelian group the additive group of some ideal in some ring?
- 13. Suppose a ring R has the property that for each $x \in R$ there is a $n \ge 2$ such that $x^n = x$. Show that every prime ideal of R is maximal.
- 14. This question illustrates a construction of the real numbers, so you should avoid mentioning them in your answer.

A sequence $\{a_n\}$ of rational numbers is a Cauchy sequence if $|a_n - a_m| \to 0$ as $m, n \to \infty$, and $\{a_n\}$ is a null sequence if $a_n \to 0$ as $n \to \infty$. Quoting any standard results from Analysis, show that the set of Cauchy sequences with componentwise addition and multiplication form a ring C, and that the null sequences form a maximal ideal N.

Deduce that C/N is a field, which contains a subfield which may be identified with \mathbb{Q} . Explain briefly why the equation $x^2 = 2$ has a solution in this field.

- 15. Let ϖ be a set of prime numbers. Write \mathbb{Z}_{ϖ} for the collection of all rationals m/n (in lowest terms) such that the only prime factors of the denominator n are in ϖ .
 - (i) Show that \mathbb{Z}_{ϖ} is a subring of the field \mathbb{Q} of rational numbers.
 - (ii) Show that any subring R of \mathbb{Q} is of the form \mathbb{Z}_{ϖ} for some set ϖ of primes.
 - (iii) Given (ii), what are the maximal subrings of \mathbb{Q} ?
- 16. (i) Show that the set $\mathcal{P}(S)$ of all subsets of a given set S is a ring with respect to the operations of symmetric difference and intersection. Describe the principal ideals in this ring. Show that the ideal (A, B) generated by elements A, B is in fact principal.
 - (ii) A ring R is called *Boolean* if every element of R is idempotent. Prove that every finite Boolean ring is isomorphic to a power-set ring $\mathcal{P}(S)$ for some set S. Give an example to show that this need not remain true for infinite Boolean rings.