IB Groups, Rings and Modules: Example Sheet 3

All rings in this course are commutative with a multiplicative identity.

1. Show that $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\omega]$ are Euclidean domains, where $\omega=\frac{1}{2}(1+\sqrt{-3})$. Show also that the usual Euclidean function $\phi(r)=N(r)$ does not make $\mathbb{Z}[\sqrt{-3}]$ into a Euclidean domain. Could there be some other Euclidean function ϕ making $\mathbb{Z}[\sqrt{-3}]$ into a Euclidean domain?
2. Show that the ideal $(2,1+\sqrt{-7})$ in $\mathbb{Z}[\sqrt{-7}]$ is not principal.
3. Give an element of $\mathbb{Z}[\sqrt{-17}]$ that is a product of two irreducibles and also a product of three irreducibles.
4. Show that if R is an integral domain then a polynomial in $R[X]$ of degree d can have at most d roots. Give a quadratic polynomial in $(\mathbb{Z} / 8 \mathbb{Z})[X]$ that has more than two roots.
5. Determine whether or not the following rings are fields, PIDs, UFDs, integral domains:

$$
\mathbb{Z}[X], \quad \mathbb{Z}[X] /\left(X^{2}+1\right), \quad \mathbb{Z}[X] /\left(2, X^{2}+1\right), \quad \mathbb{Z}[X] /\left(2, X^{2}+X+1\right), \quad \mathbb{Z}[X] /\left(3, X^{3}-X+1\right)
$$

6. Determine which of the following polynomials are irreducible in $\mathbb{Q}[X]$:

$$
X^{4}+2 X+2, \quad X^{4}+18 X^{2}+24, \quad X^{3}-9, \quad X^{3}+X^{2}+X+1, \quad X^{4}+1, \quad X^{4}+4
$$

7. Let R be an integral domain. The highest common factor (hcf) of non-zero elements a and b in R is an element d in R such that d divides both a and b, and if c divides both a and b then c divides d.
(i) Show that the hcf of a and b, if it exists, is unique up to multiplication by a unit.
(ii) Explain briefly why, if R is a UFD, the hcf of two elements exists. Give an example to show that this is not always the case in an integral domain.
(iii) Show that if R is a PID, the hcf of elements a and b exists and can be written as $r a+s b$ for some $r, s \in R$. Give an example to show that this is not always the case in a UFD.
(iv) Explain briefly how, if R is a Euclidean domain, the Euclidean algorithm can be used to find the hcf of any two non-zero elements. Use the algorithm to find the hcf of $11+7 i$ and $18-i$ in $\mathbb{Z}[i]$.
8. Find all ways of writing the following integers as sums of two squares: $221,209 \times 221,121 \times 221,5 \times 221$.
9. By working in $\mathbb{Z}[\sqrt{-2}]$, show that the only integer solutions to $x^{2}+2=y^{3}$ are $x= \pm 5, y=3$.
10. Exhibit an integral domain R and a (non-zero, non-unit) element of R that is not a product of irreducibles.
11. Let \mathbb{F}_{q} be a finite field of q elements.
(i) Show that the prime subfield K (that is, the smallest subfield) of \mathbb{F}_{q} has p elements for some prime number p. Show that \mathbb{F}_{q} is a vector space over K and deduce that $q=p^{k}$, for some k.
(ii) Show that the multiplicative group of the non-zero elements of \mathbb{F}_{q} is cyclic.
(Hint, recall the structure theorem for finite abelian groups, and note Question 4.)

Additional Questions

12. (i) Consider the polynomial $f(X, Y)=X^{3} Y+X^{2} Y^{2}+Y^{3}-Y^{2}-X-Y+1$ in $\mathbb{C}[X, Y]$. Write it as an element of $\mathbb{C}[X][Y]$, that is collect together terms in powers of Y, and then use Eisenstein's criterion to show that f is prime in $\mathbb{C}[X, Y]$.
(ii) Let F be any field. Show that the polynomial $f(X, Y)=X^{2}+Y^{2}-1$ is irreducible in $F[X, Y]$, unless F has characteristic 2. What happens in that case?
13. Show that the subring $\mathbb{Z}[\sqrt{2}]$ of \mathbb{R} is a Euclidean domain. Show that the units are $\pm(1 \pm \sqrt{2})^{n}$ for $n \geqslant 0$.
14. Let V be a 2-dimensional vector space over the field $F=\mathbb{F}_{q}$ of q elements, let Ω be the set of its 1-dimensional subspaces.
(i) Show that Ω has size $q+1$ and $G L_{2}\left(\mathbb{F}_{q}\right)$ acts on it. Show that the kernel Z of this action consists of scalar matrices and the group $P G L_{2}\left(\mathbb{F}_{q}\right)=G L_{2}\left(\mathbb{F}_{q}\right) / Z$ has order $q\left(q^{2}-1\right)$. Show that the group $P S L_{2}\left(\mathbb{F}_{q}\right)$ obtained similarly from $S L_{2}\left(\mathbb{F}_{q}\right)$ has order $q\left(q^{2}-1\right) / d$ with d equal highest common factor of $q-1$ and 2 .
(ii) Show that Ω can be identified with the set $\mathbb{F}_{q} \cup\{\infty\}$ in such a way that $G L_{2}\left(\mathbb{F}_{q}\right)$ acts on Ω as the group of Möbius transformations $z \mapsto \frac{a z+b}{c z+d}$. Show that in this action $P S L_{2}\left(\mathbb{F}_{q}\right)$ consists of those transformations with determinant a square in \mathbb{F}_{q}.
15. Show that the groups $S L_{2}\left(\mathbb{F}_{4}\right)$ and $P S L_{2}\left(\mathbb{F}_{5}\right)$ defined above both have order 60 . Use this and some questions from sheet 1 to show that they are both isomorphic to the alternating group A_{5}. Show that $S L_{2}\left(\mathbb{F}_{5}\right)$ and $P G L_{2}\left(\mathbb{F}_{5}\right)$ both have order 120 , that $S L_{2}\left(\mathbb{F}_{5}\right)$ is not isomorphic to S_{5}, but $P G L_{2}\left(\mathbb{F}_{5}\right)$ is.

Comments and corrections should be sent to rdc26@dpmms.cam.ac.uk.

