IB Groups, Rings and Modules: Example Sheet 1

1. (i) What are the orders of elements of the group S_{4} ? How many elements are there of each order?
(ii) How many subgroups of order 2 are there in S_{4} ? Of order 3? How many cyclic subgroups are there of order 4?
(iii) Find a non-cyclic subgroup V of S_{4} of order 4 . How many of these are there?
(iv) Find a subgroup D of S_{4} of order 8 . How many of these are there?
2. (i) Show that A_{4} has no subgroups of index 2. Exhibit a subgroup of index 3 .
(ii) Show that A_{5} has no subgroups of index 2,3 or 4 . Exhibit a subgroup of index 5 .
(iii) Show that A_{5} is generated by (12)(34) and (135).
3. Calculate the size of the conjugacy class of (123) as an element of S_{4}, as an element of S_{5} and as an element of S_{6}. Find in each case the centralizer. Hence calculate the size of the conjugacy class of (123) as an element of A_{4}, as an element of A_{5} and as an element of A_{6}.
4. Suppose that $H, K \triangleleft G$ with $H \cap K=1$. Consider the commutator $[h, k]=h k h^{-1} k^{-1}$ with $h \in H$ and $k \in K$, and prove that any element of H commutes with any element of K. Hence show that $H K \cong H \times K$.
5. Suppose that G is a non-abelian group of order p^{3} where p is prime.
(i) Show that the order of the centre $Z(G)$ is p.
(ii) Show that if $g \notin Z(G)$ then the order of the centralizer $C(g)$ is p^{2}.
(iii) Hence determine the sizes and numbers of the conjugacy classes.
6. (i) In question 1 we found the number of Sylow 2 -subgroups and Sylow 3 -subgroups of S_{4}. Check that your answer is consistent with Sylow's theorems. (Note that if you did not then quite complete proofs for subgroups of order 8 , you can do so now.) Identify the normalizers of the Sylow 2 -subgroups and Sylow 3-subgroups.
(ii) For $p=2,3,5$ find a Sylow p-subgroup of A_{5} and find the normalizer of the subgroup.
7. Show that there is no simple group of order 441. Show that there is no simple group of order 351 . How about orders 300 and 320 ?
8. Let p, q and r be primes (not necessarily distinct). Show that no group of order $p q$ is simple. Show that no group of order $p q^{2}$ is simple. Show that no group of order $p q r$ is simple.
9. (i) Show that any group of order 15 is cyclic.
(ii) Show that any group of order 30 has a normal cyclic subgroup of order 15 .
10. Let N and H be groups, and suppose that there is a homomorphism ϕ from H to $\operatorname{Aut}(N)$. Show that we can define a group operation on $N \times H$ by

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot n_{2}^{\phi\left(h_{1}\right)}, h_{1} \cdot h_{2}\right)
$$

where we write $n^{\phi(h)}$ for the image of n under $\phi(h)$. Show that the resulting group G has (copies of) N and H as subgroups, that N is normal in G, that $G=N H$ and $N \cap H=1$.
(We say that G is a semidirect product of N by H.)
Find an element of $\operatorname{Aut}\left(C_{7}\right)$ of order 3 and construct a non-abelian group of order 21 as a semidirect product of C_{7} by C_{3}.

Additional Questions

11. Let G be a group of even order with a cyclic Sylow 2-subgroup. By considering the regular action of G, show that G has a normal subgroup of index 2 .
[If x is a generator of a Sylow 2-subgroup, show that x is an odd permutation by working out its cycle structure.]
12. Let p be a prime. How many elements of order p are there in S_{p}, the symmetric group of order p ? What are their centralizers? How many Sylow p-subgroups are there? What are the orders of their normalizers? If q is a prime dividing $p-1$, deduce that there exists a non-abelian group of order $p q$.
13. (Frattini argument) Let P be a Sylow subgroup of the normal subgroup K of G. Show that any element g of G can be written as $g=n k$ with $n \in N_{G}(P)$ and $k \in K$, and hence $G=N_{G}(P) K$.
[Observe that P^{g} is also a Sylow subgroup of K and hence is conjugate to P in K.]
Deduce that G / K is isomorphic to $N_{G}(P) / N_{K}(P)$.
14. Show that no non-abelian simple group has order less than 60 .
15. Let G be a simple group of order 60 . Show that G is isomorphic to the alternating group A_{5}, as follows. Show that G has six Sylow 5 -subgroups. Deduce that G is isomorphic to a subgroup (also denoted by G) of index 6 of the alternating group A_{6}. By considering the coset action of A_{6} on the set of cosets of G in A_{6}, show that there is an automorphism of A_{6} which takes G to A_{5}.
(The automorphism of A_{6} which you have produced has some remarkable properties - it is not induced by conjugation by any element of S_{6}. Such an automorphism of A_{n} only exists for $n=6$.)
16. Let G be a group of order 60 which has more than one Sylow 5 -subgroup. Show that G must be simple.

Comments and corrections should be sent to rdc26@dpmms.cam.ac.uk.

