1. What are the possible cycle types of elements of S_{5} ? For each cycle type, determine how many elements have that cycle type, their order, and whether they are even or odd.
2. For $n \geq 5$, let $\sigma \in S_{n}$ be the 5 -cycle (12345). Find the centraliser of σ in S_{n}. By considering which members of the centraliser belong to A_{n}, give an alternative proof of the fact that the conjugacy class of σ in A_{n} is the same as that in S_{n} for $n \geq 7$, but is half its size for $n=5$ and $n=6$.
3. Show that a group of order 441 cannot be simple. Show that a group of order 351 cannot be simple.
4. For a prime p, how many Sylow p-subgroups are there in S_{p} ? Check that your answer is consistent with Sylow's theorems. Deduce the size of the normaliser of such a subgroup, and describe the normaliser explicitly for the subgroup generated by ($123 \ldots p$).
5. Show that no group of order $p q r$ (where p, q and r are prime) is simple.
6. Let G be a group of order 1001. Prove that G contains normal subgroups of orders 7, 11 and 13 , generated by say g_{1}, g_{2}, g_{3} respectively. By considering expressions of the form $g_{i} g_{j} g_{i}^{-1} g_{j}^{-1}$, show that the g_{i} commute with each other. Deduce that G must be cyclic.
7. Let p and q be primes with q dividing $p-1$. By considering a suitable subgroup of the group G of all maps from \mathbb{Z}_{p} to itself of the form $x \mapsto a x+b$, where $a, b \in \mathbb{Z}_{p}$ with $a \neq 0$, show that there exists a non-abelian group of order $p q$. [Either use your knowledge of the multiplicative group of \mathbb{Z}_{p}, or else apply Cauchy's theorem to it.]
8. Let G be the group of rotational symmetries of the dodecahedron. Give two OrbitStabiliser proofs that G has order 60: one based on the action of G on the vertices and one based on the action of G on the faces. Without knowledge of what this group is, why is it obvious that the group of all symmetries of the dodecahedron cannot be S_{5} ?
9. By using the fact that a normal subgroup must be a union of conjugacy classes, prove directly that A_{5} and A_{6} are simple. Exhibit a subgroup of A_{n} of index n, and explain how the simplicity of A_{n} implies that there cannot be a proper subgroup of A_{n} of smaller index (for $n \geq 5$).
10. Show that a group of order 320 cannot be simple.
11. Let G be a group of odd order, and let H be a subgroup of G of index 5. Prove that H is normal.
12. Is there an infinite simple group?
${ }^{+} 13$. For which natural numbers n is there a unique group of order n ?
13. Which finite groups have the property that all non-identity elements are conjugate?
${ }^{+}$Is there an infinite group with this property?
