1. How many abelian groups of order 108 are there?
2. Let M be a module over an integral domain R. An element x of M is a torsion element if $r x=0$ for some non-zero $r \in R$. Prove that the set T of all torsion elements of R is a submodule of M, and that the quotient M / T is torsion-free (meaning that it has no non-zero torsion elements).
3. Let M be a module over a ring R, and let N be a submodule of M. Show that if M is finitely generated then so is M / N. Show also that if N and M / N are finitely generated then so is M.
4. Is the abelian group \mathbb{Q} torsion-free? Is it free? Is it finitely generated?
5. An abelian group is called indecomposable if it cannot be written as the direct sum of two non-trivial subgroups. Which finite abelian groups are indecomposable? Write down an infinite abelian group, other than \mathbb{Z}, that is indecomposable.
6. Is $C[0,1]$ Noetherian?
7. Let R be a ring with $R[X]$ Noetherian. Prove that R is Noetherian.
8. Find a 2×2 matrix over $\mathbb{Z}[X]$ that is not equivalent to a diagonal matrix.
9. Find the Smith normal form for the 4×4 matrix over $\mathbb{Q}[X]$ that is diagonal with entries $X^{2}+2 X, X^{2}+3 X+2, X^{3}+2 X^{2}, X^{4}+X^{3}$. What can you deduce from this question about the ability of the lecturer to typeset matrices?
10. Let G be the abelian group given by generators a, b, c and the relations $6 a+10 b=0$, $6 a+15 c=0,10 b+15 c=0$ (this means that G is the free abelian group on generators a, b, c quotiented by the subgroup $\langle 6 a+10 b, 6 a+15 c, 10 b+15 c\rangle)$. Determine the structure of G as a direct sum of cyclic groups.
11. Let A be a complex matrix with characteristic polynomial $(X+1)^{6}(X-2)^{3}$ and minimum polynomial $(X+1)^{3}(X-2)^{2}$. What are the possible Jordan normal forms for A ?
12. Let M be a finitely generated module over a ring R, and let f be an R-homomorphism from M to itself. Does f injective imply f surjective? Does f surjective imply f injective?
${ }^{+} 13$. Is the set $\mathbb{Z}^{\mathbb{N}}$ of all integer sequences (with pointwise addition) a free abelian group?
${ }^{+}$14. Does there exist an abelian group that can be written as the direct sum of two indecomposable subgroups and also as the direct sum of three indecomposable subgroups?
