Lent 2012 **GROUPS, RINGS AND MODULES – EXAMPLES 3**

All rings are commutative with 1 unless otherwise stated

1. Show that $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\omega]$ are Euclidean domains, where $\omega = (1 + \sqrt{-3})/2$. Show also that the usual Euclidean function $\phi(r) = N(r)$ does not make $\mathbb{Z}[\sqrt{-3}]$ into a Euclidean domain. Could there be some other Euclidean function ϕ making $\mathbb{Z}[\sqrt{-3}]$ into a Euclidean domain?

2. Show that $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain.

3. Exhibit an element of $\mathbb{Z}[\sqrt{-17}]$ that is a product of two irreducibles and also a product of three irreducibles.

4. Show that if R is an integral domain then a polynomial in R[X] of degree d can have at most d roots. Give a quadratic polynomial in $\mathbb{Z}_8[X]$ that has more than two roots.

5. Exhibit an integral domain R and a (non-zero, non-unit) element of R that is not a product of irreducibles.

- 6. Determine whether or not the following rings are fields, PIDs, UFDs, integral domains: $\mathbb{Z}[X], \mathbb{Z}[X]/(X^2+1), \mathbb{Z}_2[X]/(X^2+1), \mathbb{Z}_2[X]/(X^2+X+1), \mathbb{Z}_3[X]/(X^2+X+1)$
- 7. Determine which of the following polynomials are irreducible in $\mathbb{Q}[X]$:

 $X^{4} + 2X + 2, X^{4} + 18X^{2} + 24, X^{3} - 9, X^{3} + X^{2} + X + 1, X^{4} + 1, X^{4} + 4$

8. Give two elements of $\mathbb{Z}[\sqrt{-5}]$ that do not have an HCF.

9. Explain why, in a PID, the HCF of two elements a and b may always be written as a linear combination of a and b (i.e. as xa + yb, some x, y), and give an example in $\mathbb{Z}[X]$ of two elements whose HCF cannot be written in this way. In a Euclidean domain, what would the 'Euclidean algorithm' for calculating HCFs be? Find the HCF of 11 + 7i and 18 - i in $\mathbb{Z}[i]$.

10. By considering factorisations in $\mathbb{Z}[\sqrt{-2}]$, show that the equation $x^2 + 2 = y^3$ has no solutions in integers except for $x = \pm 5$, y = 3.

11. If a UFD has at least one irreducible, must it have infinitely many (pairwise nonassociate) irreducibles?

12. Let R be a ring on ground-set \mathbb{Z} whose multiplication is the same as the usual multiplication on \mathbb{Z} . Must its addition be the same as the usual addition on \mathbb{Z} ?

+13. Let R be a Euclidean domain in which the quotient and remainder are always unique (in other words, for any a and b with $b \neq 0$ there exist unique q and r with a = bq + r and $\phi(r) < \phi(b)$ or r = 0). Does it follows that the ring R is either a field or a polynomial ring F[X] for some field F?

IBL