1. Let $\omega=(1+\sqrt{-3}) / 2$, and let $R=\{a+b \omega: a, b \in \mathbb{Z}\}$. Show that R is a ring. What are the units of R ?
2. Show that a (non-trivial) ring R is a field if and only if the only ideals of R are $\{0\}$ and R.
3. An element r of a ring R is nilpotent if $r^{n}=0$ for some n. What are the nilpotent elements of \mathbb{Z}_{6} ? Of \mathbb{Z}_{8} ? Of \mathbb{Z}_{24} ? Show that if r is nilpotent then $1+r$ is a unit. Show also that the nilpotent elements form an ideal.
4. Let r be an element of a ring R. Show that, in $R[X]$, the polynomial $1+r X$ is a unit if and only if r is nilpotent. Is it possible for the polynomial $1+X$ to be a product of two non-units?
5. Show that if p and q are coprime then the ring $\mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$ is isomorphic to $\mathbb{Z}_{p q}$.
6. Let A and B be elements of the power-set ring $\mathbb{P}(S)$, for some set S. What is the principal ideal (A) ? What is the ideal (A, B) ?
7. Let $I_{1} \subset I_{2} \subset I_{3} \subset \ldots$ be ideals in a ring R. Show that the union $I=\bigcup_{n=1}^{\infty} I_{n}$ is also an ideal. If each I_{n} is proper, explain why I must be proper.
8. Let I and J be ideals in a ring R. Show that $I \cap J$ is also an ideal, and that $R /(I \cap J)$ is isomorphic to a subring of $R / I \oplus R / J$.
9. Let R be the ring $C[0,1]$ of continuous real-valued functions on $[0,1]$, and let $I=$ $\left\{f \in R: f(x)=0\right.$ for $\left.0 \leq x \leq \frac{1}{2}\right\}$. Show that I is an ideal. What is $R / I ?$
10. An element r of a ring R is idempotent if $r^{2}=r$. What are the idempotent elements of \mathbb{Z}_{6} ? Of \mathbb{Z}_{8} ? Of \mathbb{Z}_{24} ? Show that if r is idempotent then so is $1-r$. Show also that if r is idempotent then (r) is naturally a ring, and that R is isomorphic to $(r) \oplus(1-r)$.
11. A ring R is Boolean if every element of R is idempotent. For each n, exhibit a Boolean ring of order 2^{n}. Prove that every finite Boolean ring is isomorphic to a power-set ring $\mathbb{P}(S)$, for some set S. Give an example to show that this need not remain true for infinite Boolean rings.
12. Show that if an element of a (not necessarily commutative) ring has two right-inverses then it has infinitely many.
13. For each n, give (with proof) an ideal of $\mathbb{Z}[X]$ that is generated by n elements but not by $n-1$ elements.
14. Is every abelian group the additive group of some ring?
