1. What are the possible cycle types of elements of S_5 ? For each cycle type, determine how many elements have that cycle type, their order, and whether they are even or odd.

2. For $n \ge 5$, let $\sigma \in S_n$ be the 5-cycle (12345). Find the centraliser of σ in S_n . By considering which members of the centraliser belong to A_n , give an alternative proof of the fact that the conjugacy class of σ in A_n is the same as that in S_n for $n \ge 7$, but is half its size for n = 5 and n = 6.

3. Show that a group of order 441 cannot be simple. Show that a group of order 351 cannot be simple.

4. For a prime p, how many Sylow p-subgroups are there in S_p ? Check that your answer is consistent with Sylow's theorems. Deduce the size of the normaliser of such a subgroup, and describe the normaliser explicitly for the subgroup generated by (123...p).

5. Let p, q and r be (not necessarily distinct) primes. Show that no group of order pqr is simple.

6. Let G be a group of order 1001. Prove that G contains normal subgroups of orders 7, 11 and 13, generated by say g_1, g_2, g_3 respectively. By considering expressions of the form $g_i g_j g_i^{-1} g_j^{-1}$, show that the g_i commute with each other. Deduce that G must be cyclic.

7. Let p and q be primes with q dividing p-1. By considering a suitable subgroup of the group G of all maps from \mathbb{Z}_p to itself of the form $x \mapsto ax + b$, where $a, b \in \mathbb{Z}_p$ with $a \neq 0$, show that there exists a non-abelian group of order pq. [Either use your knowledge of the multiplicative group of \mathbb{Z}_p , or else apply Cauchy's theorem to it.]

8. Let G be the group of rotational symmetries of the dodecahedron. Give two Orbit-Stabiliser proofs that G has order 60: one based on the action of G on the vertices and one based on the action of G on the faces. Without knowledge of what this group is, why is it obvious that the group of all symmetries of the dodecahedron cannot be S_5 ?

9. By using the fact that a normal subgroup must be a union of conjugacy classes, prove directly that A_5 and A_6 are simple. Exhibit a subgroup of A_n of index n, and explain how the simplicity of A_n implies that there cannot be a proper subgroup of A_n of smaller index (for $n \ge 5$).

10. Show that a group of order 320 cannot be simple.

11. Is there an infinite simple group?

+12. For which natural numbers n is there a unique group of order n?

+13. Let G and H be groups such that $G \times \mathbb{Z}$ is isomorphic to $H \times \mathbb{Z}$. Must G be isomorphic to H?