IB Groups, Rings and Modules: Example Sheet 2

All rings in this course are commutative with a multiplicative identity.

1. Let $\omega=\frac{1}{2}(1+\sqrt{-3})$, let $R=\{a+b \omega: a, b \in \mathbb{Z}\}$, and let $F=\{a+b \omega: a, b \in \mathbb{Q}\}$. Show that R is a subring of \mathbb{C}, and that F is a subfield of \mathbb{C}. What are the units of R ?
2. An element r of a ring R is nilpotent if $r^{n}=0$ for some n.
(i) What are the nilpotent elements of $\mathbb{Z} / 6 \mathbb{Z}$? Of $\mathbb{Z} / 8 \mathbb{Z}$? Of $\mathbb{Z} / 24 \mathbb{Z}$? Of $\mathbb{Z} / 1000 \mathbb{Z}$?
(ii) Show that if r is nilpotent then r is not a unit, but $1+r$ and $1-r$ are units.
(iii) Show that the nilpotent elements form an ideal N in R. What are the nilpotent elements in the quotient ring R / N ?
3. Let r be an element of a ring R. Show that, in the polynomial ring $R[X]$, the polynomial $1+r X$ is a unit if and only if r is nilpotent. Is it possible for the polynomial $1+X$ to be a product of two non-units?
4. Show that if I and J are ideals in the ring R, then so is $I \cap J$, and the quotient $R /(I \cap J)$ is isomorphic to a subring of the product $R / I \times R / J$.
5. (i) A proper ideal P of the ring R is prime if $r s \in P \Rightarrow r \in P$ or $s \in P$, for all $r, s \in R$.

Let I be an ideal of the ring R and P_{1}, \ldots, P_{n} be prime ideals of R. Show that if $I \subset \bigcup_{i=1}^{n} P_{i}$, then $I \subset P_{i}$ for some i.
(ii) A proper ideal M of the ring R is maximal if no proper ideal strictly contains it (i.e. $M \subset I \subset R \Rightarrow$ $I=M$ or $I=R$).
Show that $(2, X)$ is maximal in $\mathbb{Z}[X]$ but that $\left(2, X^{2}+1\right)$ is not.
(iii) Show that a maximal ideal is a prime ideal.
6. Let $I_{1} \subset I_{2} \subset I_{3} \subset \ldots$ be ideals in a ring R. Show that the union $I=\bigcup_{n=1}^{\infty} I_{n}$ is also an ideal. If each I_{n} is proper, explain why I must be proper. If each I_{n} is prime, show that I must be prime.
7. Let R be an integral domain and F be its field of fractions. Suppose that $\phi: R \rightarrow K$ is an injective ring homomorphism from R to a field K. Show that ϕ extends to an injective homomorphism $\Phi: F \rightarrow K$ from F to K. What happens if we do not assume that ϕ is injective?
8. Let R be any ring. Show that the ring $R[X]$ is a principal ideal domain if and only if R is a field.
9. Show that a finite integral domain is a field.
10. An element r of a ring R is idempotent if $r^{2}=r$.
(i) What are the idempotent elements of $\mathbb{Z} / 6 \mathbb{Z}$? Of $\mathbb{Z} / 8 \mathbb{Z}$? Of $\mathbb{Z} / 24 \mathbb{Z}$? Of $\mathbb{Z} / 1000 \mathbb{Z}$?
(ii) Show that if r is idempotent then so is $r^{\prime}=1-r$, and $r r^{\prime}=0$. Show also that the ideal (r) is naturally a ring, and that R is isomorphic to $(r) \times\left(r^{\prime}\right)$.
11. Show that the set $P(S)$ of all subsets of a given set S is a ring with respect to the operations of symmetric difference and intersection. Describe the principal ideals in this ring. Show that the ideal (A, B) generated by elements A, B is in fact principal. Are there any non-principal ideals?
12. By writing out the addition and multiplication tables, construct a field of order 4. Can you construct a field of order 6 ?

Additional Questions

13. Is every abelian group the additive group of some ring?
14. Let P be a prime ideal of R. Prove that $P[X]$ is a prime ideal of $R[X]$. If M is a maximal ideal of R, does it follow that $M[X]$ is a maximal ideal of $R[X]$?
15. A sequence $\left\{a_{n}\right\}$ of rational numbers is a Cauchy sequence if $\left|a_{n}-a_{m}\right| \rightarrow 0$ as $m, n \rightarrow \infty$, and $\left\{a_{n}\right\}$ is a null sequence if $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Quoting any standard results from Analysis, show that the Cauchy sequences with componentwise addition and multiplication form a ring C, and that the null sequences form a maximal ideal N.
Deduce that C / N is a field, with a subfield which may be identified with \mathbb{Q}. Explain briefly why the equation $x^{2}=2$ has a solution in this field.
16. Let ϖ be a set of prime numbers. Write \mathbb{Z}_{ϖ} for the collection of all rationals m / n (in lowest terms) such that the only prime factors of the denominator n are in ϖ.
(i) Show that \mathbb{Z}_{ϖ} is a subring of the field \mathbb{Q} of rational numbers.
(ii) Show that any subring R of \mathbb{Q} is of the form \mathbb{Z}_{ϖ} for some set ϖ of primes.
(iii) Given (ii), what are the maximal subrings of \mathbb{Q} ?
17. Let F be a field, and let $R=F[X, Y]$ be the polynomial ring in two variables.
(i) Let I be the principal ideal generated by the element $X-Y$ in R. Show that $R / I \cong F[X]$.
(ii) What can you say about R / I when I is the principal ideal generated by $X^{2}+Y$?
(iii) [Harder] What can you say about R / I when I is the principal ideal generated by $X^{2}-Y^{2}$?
+18 . Does every ring have a maximal ideal?

Comments and corrections should be sent to rdc26@dpmms.cam.ac.uk.

