
Lent Term 2010 R. Camina

IB Groups, Rings and Modules: Example Sheet 3

This sheet is on the second half of the chapter on rings, dealing with factorizations. All rings here are
commutative with 1. The last couple of questions, dealing with vector spaces over finite fields and linear
groups, lead into the final chapter on modules.

1. Show that Z[
√
−2] and Z[ω] are Euclidean domains, where ω = (1 +

√
−3)/2. Show also that the usual

Euclidean function φ(r) = N(r) does not make [Z
√
−3] into a Euclidean domain. Could there be some

other Euclidean function φ making Z[
√
−3] into a Euclidean domain?

2. Exhibit an element of Z[
√
−17] that is a product of two irreducibles and also a product of three irre-

ducibles.

3. Show that if R is an integral domain then a polynomial in R[X] of degree d can have at most d roots.
Give a quadratic polynomial in Z/8Z[X] that has more than two roots.

4. Determine whether or not the following rings are fields, PIDs, UFDs, integral domains:

Z[X]; Z[X]/(X2 + 1); Z[X]/(2, X2 + 1); Z[X]/(2, X2 +X + 1); Z[X]/(3, X2 + 1).

5. Determine which of the following polynomials are irreducible in Q[X]:

X4 + 2X + 2, X4 + 18X2 + 24, X3 − 9, X3 +X2 +X + 1, X4 + 1, X4 + 4.

6. Let R be an integral domain. The highest common factor of non-zero elements a and b in R is an element
d in R such that d divides both a and b, and if c divides both a and b then c divides d.
(i) Give two elements of Z[

√
−5] that do not have a highest common factor.

(ii) Show that the highest common factor of a and b, if it exists, is unique up to multiplication by a unit.
(iii) Explain briefly why, if R is a UFD, the highest common factor of two elements always exists.
(iv) Show that if R is a PID, the highest common factor d of elements a and b exists and can be written
as d = ra+ sb for some r, s ∈ R. [ The ideals (a, b) and (d) in R are equal.]
(v) Explain briefly how, if R is a Euclidean domain, the Euclidean algorithm can be used to find the
highest common factor of any two non-zero elements.
(vi) Find the highest common factor of 11 + 7i and 18− i in Z[i].

7. Find all possible ways of writing the following integers as sums of two squares: 221; 209×221; 121×221.

8. By considering factorisations in Z[
√
−2], show that the equation x2 +2 = y3 has no solutions in integers

except for x = ±5, y = 3.

9. Let F be a finite field. Show that the prime subfield K (that is, the smallest subfield) of F has p elements
for some prime number p. Show that F is a vector space over K and deduce that F has pn elements for
some n.

10. Let F = Fq be a finite field of q elements, let V be a vector space of dimension n over F .
(i) Show that V has qn vectors. How many (ordered) bases does V have? Determine the order of the
group GLn(Fq) of all non-singular n× n matrices with entries in Fq.
(ii) Show that the determinant homomorphism from GLn(Fq) to Fq \ 0 is surjective and hence find the
order of the group SLn(Fq) of all matrices in GLn(Fq) of determinant 1.
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Additional Questions

11. (i) Consider the polynomial f(X,Y ) = X3Y +X2Y 2 + Y 3 − Y 2 −X − Y +1 in C[X,Y ]. Write it as an
element of C[X][Y ], that is collect together terms in powers of Y , and then use Eisenstein’s criterion to
show that f is prime in C[X,Y ].
(ii) Let F be any field. Show that the polynomial f(X,Y ) = X2 + Y 2 − 1 is irreducible in F [X,Y ],
unless F has characteristic 2. What happens in that case?

12. Show that the subring Z[
√
2] of R is a Euclidean domain. Show that the units are ±(1±

√
2)n for n ≥ 0.

13. Show that the set SL2(Z) of integer 2×2 matrices of determinant 1 is a group under multiplication. Show
that there is a natural homomorphism from SL2(Z) to SL2(Fp), the group of determinant 1 matrices
with entries in Fp = Z/pZ. Identify the kernel.

14. Let V be a 2-dimensional vector space over the field F = Fq of q elements, let Ω be the set of its
1-dimensional subspaces.
(i) Show that Ω has size q + 1 and GL2(Fq) acts on it. Show that the kernel Z of this action consists
of scalar matrices and the group PGL2(Fq) = GL2(Fq)/Z has order q(q2 − 1). Show that the group
PSL2(Fq) obtained similarly from SL2(Fq) has order q(q2 − 1)/d with d equal highest common factor
of q − 1 and 2.
(ii) Show that Ω can be identified with the set Fq ∪ {∞} in such a way that GL2(Fq) acts on Ω as
the group of Möbius transformations z 7→ az+b

cz+d
. Show that in this action PSL2(Fq) consists of those

transformations with determinant a square in Fq.

15. Show that the groups SL2(F4) and PSL2(F5) defined above both have order 60. Use this and some
questions from sheet 1 to show that they are both isomorphic to the alternating group A5. Show that
SL2(F5) and PGL2(F5) both have order 120, that SL2(F5) is not isomorphic to S5, but PGL2(F5) is.

Comments and corrections should be sent to rdc26@dpmms.cam.ac.uk.
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