IB Groups, Rings and Modules: Example Sheet 3

This sheet is on the second half of the chapter on rings, dealing with factorizations. All rings here are commutative with 1 . The last couple of questions, dealing with vector spaces over finite fields and linear groups, lead into the final chapter on modules.

1. Show that $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\omega]$ are Euclidean domains, where $\omega=(1+\sqrt{-3}) / 2$. Show also that the usual Euclidean function $\phi(r)=N(r)$ does not make $[\mathbb{Z} \sqrt{-3}]$ into a Euclidean domain. Could there be some other Euclidean function ϕ making $\mathbb{Z}[\sqrt{-3}]$ into a Euclidean domain?
2. Exhibit an element of $\mathbb{Z}[\sqrt{-17}]$ that is a product of two irreducibles and also a product of three irreducibles.
3. Show that if R is an integral domain then a polynomial in $R[X]$ of degree d can have at most d roots. Give a quadratic polynomial in $\mathbb{Z} / 8 \mathbb{Z}[X]$ that has more than two roots.
4. Determine whether or not the following rings are fields, PIDs, UFDs, integral domains:

$$
\mathbb{Z}[X] ; \mathbb{Z}[X] /\left(X^{2}+1\right) ; \mathbb{Z}[X] /\left(2, X^{2}+1\right) ; \mathbb{Z}[X] /\left(2, X^{2}+X+1\right) ; \mathbb{Z}[X] /\left(3, X^{2}+1\right)
$$

5. Determine which of the following polynomials are irreducible in $\mathbb{Q}[X]$:

$$
X^{4}+2 X+2, X^{4}+18 X^{2}+24, X^{3}-9, X^{3}+X^{2}+X+1, X^{4}+1, X^{4}+4
$$

6. Let R be an integral domain. The highest common factor of non-zero elements a and b in R is an element d in R such that d divides both a and b, and if c divides both a and b then c divides d.
(i) Give two elements of $\mathbb{Z}[\sqrt{-5}]$ that do not have a highest common factor.
(ii) Show that the highest common factor of a and b, if it exists, is unique up to multiplication by a unit.
(iii) Explain briefly why, if R is a UFD, the highest common factor of two elements always exists.
(iv) Show that if R is a PID, the highest common factor d of elements a and b exists and can be written as $d=r a+s b$ for some $r, s \in R$. [The ideals (a, b) and (d) in R are equal.]
(v) Explain briefly how, if R is a Euclidean domain, the Euclidean algorithm can be used to find the highest common factor of any two non-zero elements.
(vi) Find the highest common factor of $11+7 i$ and $18-i$ in $\mathbb{Z}[i]$.
7. Find all possible ways of writing the following integers as sums of two squares: $221 ; 209 \times 221 ; 121 \times 221$.
8. By considering factorisations in $\mathbb{Z}[\sqrt{-2}]$, show that the equation $x^{2}+2=y^{3}$ has no solutions in integers except for $x= \pm 5, y=3$.
9. Let F be a finite field. Show that the prime subfield K (that is, the smallest subfield) of F has p elements for some prime number p. Show that F is a vector space over K and deduce that F has p^{n} elements for some n.
10. Let $F=\mathbb{F}_{q}$ be a finite field of q elements, let V be a vector space of dimension n over F.
(i) Show that V has q^{n} vectors. How many (ordered) bases does V have? Determine the order of the group $G L_{n}\left(\mathbb{F}_{q}\right)$ of all non-singular $n \times n$ matrices with entries in \mathbb{F}_{q}.
(ii) Show that the determinant homomorphism from $G L_{n}\left(\mathbb{F}_{q}\right)$ to $\mathbb{F}_{q} \backslash 0$ is surjective and hence find the order of the group $S L_{n}\left(\mathbb{F}_{q}\right)$ of all matrices in $G L_{n}\left(\mathbb{F}_{q}\right)$ of determinant 1.

Additional Questions

11. (i) Consider the polynomial $f(X, Y)=X^{3} Y+X^{2} Y^{2}+Y^{3}-Y^{2}-X-Y+1$ in $\mathbb{C}[X, Y]$. Write it as an element of $\mathbb{C}[X][Y]$, that is collect together terms in powers of Y, and then use Eisenstein's criterion to show that f is prime in $\mathbb{C}[X, Y]$.
(ii) Let F be any field. Show that the polynomial $f(X, Y)=X^{2}+Y^{2}-1$ is irreducible in $F[X, Y]$, unless F has characteristic 2. What happens in that case?
12. Show that the subring $\mathbb{Z}[\sqrt{2}]$ of \mathbb{R} is a Euclidean domain. Show that the units are $\pm(1 \pm \sqrt{2})^{n}$ for $n \geq 0$.
13. Show that the set $S L_{2}(\mathbb{Z})$ of integer 2×2 matrices of determinant 1 is a group under multiplication. Show that there is a natural homomorphism from $S L_{2}(\mathbb{Z})$ to $S L_{2}\left(\mathbb{F}_{p}\right)$, the group of determinant 1 matrices with entries in $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Identify the kernel.
14. Let V be a 2-dimensional vector space over the field $F=\mathbb{F}_{q}$ of q elements, let Ω be the set of its 1-dimensional subspaces.
(i) Show that Ω has size $q+1$ and $G L_{2}\left(\mathbb{F}_{q}\right)$ acts on it. Show that the kernel Z of this action consists of scalar matrices and the group $P G L_{2}\left(\mathbb{F}_{q}\right)=G L_{2}\left(\mathbb{F}_{q}\right) / Z$ has order $q\left(q^{2}-1\right)$. Show that the group $P S L_{2}\left(\mathbb{F}_{q}\right)$ obtained similarly from $S L_{2}\left(\mathbb{F}_{q}\right)$ has order $q\left(q^{2}-1\right) / d$ with d equal highest common factor of $q-1$ and 2 .
(ii) Show that Ω can be identified with the set $\mathbb{F}_{q} \cup\{\infty\}$ in such a way that $G L_{2}\left(\mathbb{F}_{q}\right)$ acts on Ω as the group of Möbius transformations $z \mapsto \frac{a z+b}{c z+d}$. Show that in this action $P S L_{2}\left(\mathbb{F}_{q}\right)$ consists of those transformations with determinant a square in \mathbb{F}_{q}.
15. Show that the groups $S L_{2}\left(\mathbb{F}_{4}\right)$ and $P S L_{2}\left(\mathbb{F}_{5}\right)$ defined above both have order 60 . Use this and some questions from sheet 1 to show that they are both isomorphic to the alternating group A_{5}. Show that $S L_{2}\left(\mathbb{F}_{5}\right)$ and $P G L_{2}\left(\mathbb{F}_{5}\right)$ both have order 120 , that $S L_{2}\left(\mathbb{F}_{5}\right)$ is not isomorphic to S_{5}, but $P G L_{2}\left(\mathbb{F}_{5}\right)$ is.

Comments and corrections should be sent to rdc26@dpmms.cam.ac.uk.

