IB Groups, Rings and Modules: Example Sheet 4

All rings in this course are commutative with a multiplicative identity.

1. Let M be a module over an integral domain R. An element m is a torsion element if $r m=0$ for some non-zero $r \in R$. Show that the set of T of all torsion elements in M is a submodule of M - the torsion submodule. Show further that the quotient M / T is torsion-free, that is, the only torsion element is the zero element.
2. We say that an R-module satisfies condition (N) on submodules if any submodule is finitely generated. Show that this condition is equivalent to condition $(A C C)$: every increasing chain of submodules terminates.
3. (i) Is the abelian group \mathbb{Q} torsion free? Is it free? Is it finitely generated?
(ii) Prove that \mathbb{R} is not finitely generated as a module over the ring \mathbb{Q}.
4. Use elementary operations to bring the integer matrix $A=\left(\begin{array}{ccc}-4 & -6 & 7 \\ 2 & 2 & 4 \\ 6 & 6 & 15\end{array}\right)$ to Smith normal form D. Check your result using minors. Write down invertible matrices P, Q for which $D=Q A P$.
5. Work out the invariant factors of the matrices over $\mathbb{R}[X]$:

$$
\left(\begin{array}{cccc}
2 X-1 & X & X-1 & 1 \\
X & 0 & 1 & 0 \\
0 & 1 & X & X \\
1 & X^{2} & 0 & 2 X-2
\end{array}\right) \text { and }\left(\begin{array}{cccc}
X^{2}+2 X & 0 & 0 & 0 \\
0 & X^{2}+3 X+2 & 0 & 0 \\
0 & 0 & X^{3}+2 X^{2} & 0 \\
0 & 0 & 0 & X^{4}+X^{3}
\end{array}\right)
$$

6. Let A be the abelian group given by generators a, b, c and the relations $6 a+10 b=0,6 a+15 c=0,10 b+15 c=0$ (that is, A is the quotient of the free abelian group on generators a, b, c by the subgroup generated by the elements $6 a+10 b, 6 a+15 c, 10 b+15 c)$.
Determine the structure of G as a direct sum of cyclic groups.
7. How many abelian groups are there of order 6 ? Of order 60 ? Of order $6000 ?$
8. Write $f(n)$ for the number of distinct abelian groups of order n.
(i) Show that if $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ with the p_{i} distinct primes and $a_{i} \in \mathbb{N}$ then $f(n)=f\left(p_{1}^{a_{1}}\right) f\left(p_{2}^{a_{2}}\right) \cdots f\left(p_{k}^{a_{k}}\right)$.
(ii) Show that $f\left(p^{a}\right)$ equals the number $p(a)$ of partitions of a, that is, $p(a)$ is the number of ways of writing a as a sum of positive integers, where the order of summands is unimportant. (For example, $p(5)=7$, since $5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1$.)
9. Let A be a complex matrix with characteristic polynomial $(X+1)^{6}(X-2)^{3}$ and minimal polynomial $(X+1)^{3}(X-2)^{2}$. Write down the possible Jordan normal forms for A.
10. Find a 2×2 matrix over $\mathbb{Z}[X]$ that is not equivalent to a diagonal matrix.

Additional Questions

11. A real $n \times n$ matrix A satisfies the equation $A^{2}+I=0$. Show that n is even and A is similar to a block matrix $\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$ with each block an $m \times m$ matrix (where $n=2 m$).
12. Let R be a Noetherian ring and M be a finitely generated R-module. Show that all submodules of M are finitely generated.
13. Show that a complex number α is an algebraic integer if and only if the additive group of the ring $\mathbb{Z}[\alpha]$ is finitely generated (i.e. $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z}-module). Furthermore if α and β are algebraic integers show that the subring $\mathbb{Z}[\alpha, \beta]$ of \mathbb{C} generated by α and β also has a finitely generated additive group and deduce that $\alpha-\beta$ and $\alpha \beta$ are algebraic integers. Show that the algebraic integers form a subring of \mathbb{C}.
14. What is the rational canonical form of a matrix?

Show that the group $G L_{2}\left(\mathbb{F}_{2}\right)$ of non-singular 2×2 matrices over the field \mathbb{F}_{2} of 2 elements has three conjugacy classes of elements.
Show that the group $G L_{3}\left(\mathbb{F}_{2}\right)$ of non-singular 3×3 matrices over the field \mathbb{F}_{2} has six conjugacy classes of elements, corresponding to minimal polynomials $X+1,(X+1)^{2},(X+1)^{3}, X^{3}+1, X^{3}+X^{2}+1, X^{3}+X+1$, one each of elements of orders $1,2,3$ and 4 , and two of elements of order 7 .

Comments and corrections should be sent to saxl@dpmms.cam.ac.uk.

