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(1) Suppose that A is a subring of B. Assume that B is integral over A; that
is, every element x of B is is a zero of a monic polynomial in A[X].

(i*) Suppose that A, B are domains and that B is integral over A. Show that
B is a field if and only if A is a field.

(ii*) Deduce that if @ is a prime ideal of B, then @ is maximal in B if and
only if @ N A is maximal in A.

(iii) State and prove the Noether Normalization Lemma.

(iv) Suppose that field K is finitely generated as a ring over Z. That is,
K = Z[xy,...,x,] for some x; € K. Show that K is finite (i.e., that K is a
finite set). Deduce that if A is any ring that is finitely generated as a ring
over Z and I is a maximal ideal of A, then A/I is finite.

(v) Suppose that G is a finitely generated subgroup of GL,(C), the group of
invertible n x n matrices over C. (“Finitely generated” for a group means
that there exist z1, ..., z, € G such that every element g of G can be written
as a product of positive and negative powers of the x;.) Show that for every
g € G with g # 1, there is a finite group H and a homomorphism ¢ : G — H

with ¢(g) # 1.

(2) Suppose that D is a regular dodecahedron.
(i*) Show that the group Rot(D) of rotations of D is simple and of order 60.
(ii*) Show that Rot(D) is isomorphic to the alternating group As on 5 letters.
The rest of this question asks you to prove, by induction on n, that A,
is simple for all n > 5.
Suppose that H is normal in G := A,,, that H # 1 and that n > 5.
Assume, as the induction hypothesis, that A,,_; is simple.
(iii) Put G; = the stabilizer of i in G. Show that G; = A,_; and deduce
that, for all i, HNG; =1 or G;.
(iv) Show that, if G; C H for one value of i, then G; C H for all i.
(v) Assume that G; C H for some i. Show that H is transitive and deduce
that H = G.



(vi) Assume that H NG; =1 for all 7. Pick h € H, h # 1, of minimal order.
Write h as a product of disjoint cycles, say h = o1..... o, with o; of length
l;, say, with ¢; < ... < {,.. Show that the ¢; are equal, say to ¢, that ¢ is
prime and that n = r¢. Derive a contradiction by considering separately the
following cases: n is prime; £ > 5 and { #n; { = 3; { = 2.

(3*%) Suppose that p is a prime number. A p-group is a finite group whose
order is a power of p. The centre Z(G) of a group G is the set of elements
z € G such that zg = gz for all g € G.

(i) Prove that if G is a p-group, then Z(G) # 1.
(ii) Mlustrate your answer to (i) when G is the group of matrices
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and a,b,c € Z/(p).

(iii) Suppose that G is a finite group in which g? = 1 for all ¢ € G. Prove
that G is commutative. What happens if instead p is an odd prime and
gP =1 for all g € G?

(4) The n x n Vandermonde matriz is ()~

Prove that its determinant is [],_;(z; — ;).

"), where i, run from 1 to n.

(5*)(i) Show that the symmetric group S, is generated by the transpositions
(12),(23),...,(n — 1,n).

(ii) Suppose that H is a transitive subgroup of S,, that contains a transposi-
tion and that n is prime. Show that H = S,,. Is this true if n is not prime?

(6%) Is 2 + 2* — x + 2 irreducible in Q[z]?

(7) Suppose that A is a Noetherian subring of B. Show that the set C' of
elements € B that are integral over A is a subring of B. (It is called the
integral closure of A in B.)

(8) A field K is algebraically closed if every polynomial f € K[x] has a zero
in K (so all its zeros in K). This exercise shows that every countable field k
has an algebraic closure, that is, an algebraic extension k£ C K such that K
is algebraically closed.

(i) Suppose that f € k[z] and that ¢ is an irreducible factor of f. Show that
k[x]/(g) is an extension of k in which f has a zero. Deduce that there is
a finite extension of k in which f factors into linear terms (“f splits com-
pletely”).



(ii) Show that if  is an algebraic extension of k and every f € k[z] has a
zero in €2, then (2 is algebraically closed.

(iii) Show that k[z] is countable.

(iv) Suppose that fi, fo, ... are the elements of k[z]. Define fields Fy C E; C
... inductively as follows: Ey = k and E;,; is a finite extension of F; in which
fi splits completely. Show that (J, E; is an algebraic closure of k.

There are uncountable fields in real life, e.g., R, the field Q, of p-adic
numbers (the fraction field of the ring Z, of p-adic integers), the field ko((?))
of formal Laurent series in a variable ¢ over a field kg (the fraction field of
the ring ko [[t]] of formal power series in a variable ¢ over kg), which motivates
the next exercise.

(9) Here we show, via an explicit use of Zorn’s lemma, that every field k has
an algebraic closure.

Take a set z; of indeterminates, one for each non-constant monic f €
k[z]. In the infinite polynomial ring A = k[{z¢|f € k[z]}], consider the ideal
I generated by the elements f(zy).
(i) Show that I # A.
(ii) Show that there is a maximal ideal M containing / and that Q = A/M
is an algebraic closure of k.

(10*) (i) Show that the subset V' of Sy defined by
V =A{1,(12)(34), (13)(24), (14)(23)}

is a subgroup of A4 and that Ay is not simple.
(ii) Describe V' in terms of modules.
(iii) Write the product (123)(12345) as a product of disjoint cycles.

(11*)(i) State the Sylow theorems.
(ii) Suppose that p, ¢, r are distinct prime numbers. Show that no group of
order pqr is simple.



HINTS: (1)(iv) Suppose first that K has characteristic 0. Then Z C Q C
K = Z[zy,...,x,] = Q[x1,...,x,], so by NNL there is a polynomial subring
Q[t1,...,t,] of K with K f.g. as a module over Q[ty,...,t,]. Then, by (i*),
Ql[t1, ..., t,] is a field, so r = 0. So K is algebraic over Q, so for each ¢ there is
a non-zero a; € Z with a;x; integral over Z. Then K is finitely generated as a
module over Z[1/a], with a = [ a;. So Z[1/a] is a field; derive a contradiction
to this.

So K has characteristic p > 0, and is then f.g. as a ring over F,. The
same argument shows that K is algebraic over I, so finite.
(1)(v) Pick a finite set of generators g; of G; these are matrices over C. So
there is a subring A = Z[xy, ..., x,] generated by the entries of all the g;. Now
G C GL,(A).

Suppose 1 # g € G. Either g has an off-diagonal entry f # 0 or it has
a diagonal entry f+ 1 # 1. Put A[1/f] = R and regard G as a subgroup of
GL,(R). Take any maximal ideal I of R and take H = GL,,(R/I); note that
R/I is finite, by (iv).

(3)(i) Consider the action of G by conjugation on Z(G) and use the orbit-
stabilizer theorem.

(ii) Z(G) is the subgroup where a = ¢ = 0.

(iii) Consider G as in (ii). Show that if

1 a O
h=10 1 ¢
0 01
then
1 na n(n-—1)ac/2
h*=10 1 ne
0 0 1

(4) Regard this as an identity in the polynomial ring A = Z|[xy, ..., z,]. Con-
sider what happens if two of the variables are set equal to each other and
exploit the fact that A is a UFD.

(5)(1) We know that S, is generated by transpositions, so we need only show
that (ij) lies in the subgroup generated by the given elements. Check that
if i < j—2, then (i,i+ 1)(ij)(i,i+ 1) = (i + 1, 7).

(ii) Transitivity plus the orbit-stabilizer theorem shows that n divides the
order of H. Cauchy’s theorem, or Sylow’s theorem, shows that H has an
element o of order p; it must be an n-cycle. Put o = (12...n) and 7 = (ij),
with 7 < j. Then 07 ‘70" = (jk) with k — j = j — 4, modulo n. So we get



a sequence (ij), (jk), (kl), ... that can be used instead of (12), (23), (34), ... to
generate S,,.
Take n = 4 and consider the dihedral subgroup Dg of S,.

(7) Suppose z,y € C. Fach of x + y, zy lies in Az, y].

)
(8)(ii) Let f =g a;a’ € Qfx]. There is a finite extension Q C ' such that
f has a zero a € §)'. Consider the extensions

k C klag, ..., an] C Elag, ..., an, a].

These are algebraic, so finite. So « lies in a finite extension of k£ and so is a
zero of a polynomial g € k[z]. By assumption, all the zeros of g lie in .

(9)(i) If 1 € I, then there are finitely many fi, ..., f, € k[z] and an equation

1= 91f1($f1) S gnfn(xfn>a

with ¢g; € A.

There is a finite extension K of k in which every f; has a zero, say
a;. Then there is a ring homomorphism 7 : A — K with n(zs) = a; and
m(zg) =01if f # fi,..., fu. Then w(fi(xs,)) = 0, so that in K we have 1 = 0.
This contradiction shows that 1 € I.
(ii) M exists, by Zorn’s lemma (see previous examples sheet). € contains k
and every non-constant polynomial in k[z] has a zro in Q.



