# Groups, Rings and Modules (EXAMPLE SHEET 4) 

NIS-B, Lent 2008

(1) Suppose that $A$ is a subring of $B$. Assume that $B$ is integral over $A$; that is, every element $x$ of $B$ is is a zero of a monic polynomial in $A[X]$.
(i*) Suppose that $A, B$ are domains and that $B$ is integral over $A$. Show that $B$ is a field if and only if $A$ is a field.
(ii*) Deduce that if $Q$ is a prime ideal of $B$, then $Q$ is maximal in $B$ if and only if $Q \cap A$ is maximal in $A$.
(iii) State and prove the Noether Normalization Lemma.
(iv) Suppose that field $K$ is finitely generated as a ring over $\mathbb{Z}$. That is, $K=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ for some $x_{i} \in K$. Show that $K$ is finite (i.e., that $K$ is a finite set). Deduce that if $A$ is any ring that is finitely generated as a ring over $\mathbb{Z}$ and $I$ is a maximal ideal of $A$, then $A / I$ is finite.
(v) Suppose that $G$ is a finitely generated subgroup of $G L_{n}(\mathbb{C})$, the group of invertible $n \times n$ matrices over $\mathbb{C}$. ("Finitely generated" for a group means that there exist $x_{1}, \ldots, x_{n} \in G$ such that every element $g$ of $G$ can be written as a product of positive and negative powers of the $x_{i}$.) Show that for every $g \in G$ with $g \neq 1$, there is a finite group $H$ and a homomorphism $\phi: G \rightarrow H$ with $\phi(g) \neq 1$.
(2) Suppose that $D$ is a regular dodecahedron.
(i*) Show that the group $\operatorname{Rot}(D)$ of rotations of $D$ is simple and of order 60 .
(ii*) Show that $\operatorname{Rot}(D)$ is isomorphic to the alternating group $A_{5}$ on 5 letters.
The rest of this question asks you to prove, by induction on $n$, that $A_{n}$ is simple for all $n \geq 5$.

Suppose that $H$ is normal in $G:=A_{n}$, that $H \neq 1$ and that $n>5$. Assume, as the induction hypothesis, that $A_{n-1}$ is simple.
(iii) Put $G_{i}=$ the stabilizer of $i$ in $G$. Show that $G_{i} \cong A_{n-1}$ and deduce that, for all $i, H \cap G_{i}=1$ or $G_{i}$.
(iv) Show that, if $G_{i} \subset H$ for one value of $i$, then $G_{i} \subset H$ for all $i$.
(v) Assume that $G_{i} \subset H$ for some $i$. Show that $H$ is transitive and deduce that $H=G$.
(vi) Assume that $H \cap G_{i}=1$ for all $i$. Pick $h \in H, h \neq 1$, of minimal order. Write $h$ as a product of disjoint cycles, say $h=\sigma_{1} \ldots \sigma_{r}$, with $\sigma_{i}$ of length $\ell_{i}$, say, with $\ell_{1} \leq \ldots \leq \ell_{r}$. Show that the $\ell_{i}$ are equal, say to $\ell$, that $\ell$ is prime and that $n=r \ell$. Derive a contradiction by considering separately the following cases: $n$ is prime; $\ell \geq 5$ and $\ell \neq n ; \ell=3 ; \ell=2$.
$\left(3^{*}\right)$ Suppose that $p$ is a prime number. A $p$-group is a finite group whose order is a power of $p$. The centre $Z(G)$ of a group $G$ is the set of elements $z \in G$ such that $z g=g z$ for all $g \in G$.
(i) Prove that if $G$ is a $p$-group, then $Z(G) \neq 1$.
(ii) Illustrate your answer to (i) when $G$ is the group of matrices

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

and $a, b, c \in \mathbb{Z} /(p)$.
(iii) Suppose that $G$ is a finite group in which $g^{2}=1$ for all $g \in G$. Prove that $G$ is commutative. What happens if instead $p$ is an odd prime and $g^{p}=1$ for all $g \in G$ ?
(4) The $n \times n$ Vandermonde matrix is $\left(x_{i}^{j-1}\right)$, where $i, j$ run from 1 to $n$. Prove that its determinant is $\prod_{i>j}\left(x_{i}-x_{j}\right)$.
$\left(5^{*}\right)\left(\right.$ i) Show that the symmetric group $S_{n}$ is generated by the transpositions (12), (23), $\ldots,(n-1, n)$.
(ii) Suppose that $H$ is a transitive subgroup of $S_{n}$ that contains a transposition and that $n$ is prime. Show that $H=S_{n}$. Is this true if $n$ is not prime?
$\left(6^{*}\right)$ Is $x^{3}+x^{2}-x+2$ irreducible in $\mathbb{Q}[x]$ ?
(7) Suppose that $A$ is a Noetherian subring of $B$. Show that the set $C$ of elements $x \in B$ that are integral over $A$ is a subring of $B$. (It is called the integral closure of $A$ in $B$.)
(8) A field $K$ is algebraically closed if every polynomial $f \in K[x]$ has a zero in $K$ (so all its zeros in $K$ ). This exercise shows that every countable field $k$ has an algebraic closure, that is, an algebraic extension $k \subset K$ such that $K$ is algebraically closed.
(i) Suppose that $f \in k[x]$ and that $g$ is an irreducible factor of $f$. Show that $k[x] /(g)$ is an extension of $k$ in which $f$ has a zero. Deduce that there is a finite extension of $k$ in which $f$ factors into linear terms (" $f$ splits completely").
(ii) Show that if $\Omega$ is an algebraic extension of $k$ and every $f \in k[x]$ has a zero in $\Omega$, then $\Omega$ is algebraically closed.
(iii) Show that $k[x]$ is countable.
(iv) Suppose that $f_{1}, f_{2}, \ldots$ are the elements of $k[x]$. Define fields $E_{0} \subset E_{1} \subset$ ... inductively as follows: $E_{0}=k$ and $E_{i+1}$ is a finite extension of $E_{i}$ in which $f_{i}$ splits completely. Show that $\bigcup_{i} E_{i}$ is an algebraic closure of $k$.

There are uncountable fields in real life, e.g., $\mathbb{R}$, the field $\mathbb{Q}_{p}$ of $p$-adic numbers (the fraction field of the ring $\mathbb{Z}_{p}$ of $p$-adic integers), the field $k_{0}((t))$ of formal Laurent series in a variable $t$ over a field $k_{0}$ (the fraction field of the ring $k_{0}[[t]]$ of formal power series in a variable $t$ over $k_{0}$ ), which motivates the next exercise.
(9) Here we show, via an explicit use of Zorn's lemma, that every field $k$ has an algebraic closure.

Take a set $x_{f}$ of indeterminates, one for each non-constant monic $f \in$ $k[x]$. In the infinite polynomial ring $A=k\left[\left\{x_{f} \mid f \in k[x]\right\}\right]$, consider the ideal $I$ generated by the elements $f\left(x_{f}\right)$.
(i) Show that $I \neq A$.
(ii) Show that there is a maximal ideal $M$ containing $I$ and that $\Omega=A / M$ is an algebraic closure of $k$.
$\left(10^{*}\right)$ (i) Show that the subset $V$ of $S_{4}$ defined by

$$
V=\{1,(12)(34),(13)(24),(14)(23)\}
$$

is a subgroup of $A_{4}$ and that $A_{4}$ is not simple.
(ii) Describe $V$ in terms of modules.
(iii) Write the product (123)(12345) as a product of disjoint cycles.
$\left(11^{*}\right)(\mathrm{i})$ State the Sylow theorems.
(ii) Suppose that $p, q, r$ are distinct prime numbers. Show that no group of order $p q r$ is simple.

HINTS: (1)(iv) Suppose first that $K$ has characteristic 0 . Then $\mathbb{Z} \subset \mathbb{Q} \subset$ $K=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, so by NNL there is a polynomial subring $\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right]$ of $K$ with $K$ f.g. as a module over $\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right]$. Then, by (i*), $\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right]$ is a field, so $r=0$. So $K$ is algebraic over $\mathbb{Q}$, so for each $i$ there is a non-zero $a_{i} \in \mathbb{Z}$ with $a_{i} x_{i}$ integral over $\mathbb{Z}$. Then $K$ is finitely generated as a module over $\mathbb{Z}[1 / a]$, with $a=\prod a_{i}$. So $\mathbb{Z}[1 / a]$ is a field; derive a contradiction to this.

So $K$ has characteristic $p>0$, and is then f.g. as a ring over $\mathbb{F}_{p}$. The same argument shows that $K$ is algebraic over $\mathbb{F}_{p}$, so finite.
(1)(v) Pick a finite set of generators $g_{i}$ of $G$; these are matrices over $\mathbb{C}$. So there is a subring $A=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ generated by the entries of all the $g_{i}$. Now $G \subset G L_{n}(A)$.

Suppose $1 \neq g \in G$. Either $g$ has an off-diagonal entry $f \neq 0$ or it has a diagonal entry $f+1 \neq 1$. Put $A[1 / f]=R$ and regard $G$ as a subgroup of $G L_{n}(R)$. Take any maximal ideal $I$ of $R$ and take $H=G L_{n}(R / I)$; note that $R / I$ is finite, by (iv).
(3)(i) Consider the action of $G$ by conjugation on $Z(G)$ and use the orbitstabilizer theorem.
(ii) $Z(G)$ is the subgroup where $a=c=0$.
(iii) Consider $G$ as in (ii). Show that if

$$
h=\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

then

$$
h^{n}=\left(\begin{array}{ccc}
1 & n a & n(n-1) a c / 2 \\
0 & 1 & n c \\
0 & 0 & 1
\end{array}\right)
$$

(4) Regard this as an identity in the polynomial ring $A=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. Consider what happens if two of the variables are set equal to each other and exploit the fact that $A$ is a UFD.
(5)(i) We know that $S_{n}$ is generated by transpositions, so we need only show that ( $i j$ ) lies in the subgroup generated by the given elements. Check that if $i \leq j-2$, then $(i, i+1)(i j)(i, i+1)=(i+1, j)$.
(ii) Transitivity plus the orbit-stabilizer theorem shows that $n$ divides the order of $H$. Cauchy's theorem, or Sylow's theorem, shows that $H$ has an element $\sigma$ of order $p$; it must be an $n$-cycle. Put $\sigma=(12 \ldots n)$ and $\tau=(i j)$, with $i<j$. Then $\sigma^{j-i} \tau \sigma^{i-j}=(j k)$ with $k-j=j-i$, modulo $n$. So we get
a sequence $(i j),(j k),(k l), \ldots$ that can be used instead of $(12),(23),(34), \ldots$ to generate $S_{n}$.

Take $n=4$ and consider the dihedral subgroup $D_{8}$ of $S_{4}$.
(7) Suppose $x, y \in C$. Each of $x \pm y, x y$ lies in $A[x, y]$.
(8)(ii) Let $f=\sum_{0}^{n} a_{i} x^{i} \in \Omega[x]$. There is a finite extension $\Omega \subset \Omega^{\prime}$ such that $f$ has a zero $\alpha \in \Omega^{\prime}$. Consider the extensions

$$
k \subset k\left[a_{0}, \ldots, a_{n}\right] \subset k\left[a_{0}, \ldots, a_{n}, \alpha\right] .
$$

These are algebraic, so finite. So $\alpha$ lies in a finite extension of $k$ and so is a zero of a polynomial $g \in k[x]$. By assumption, all the zeros of $g$ lie in $\Omega$. (9)(i) If $1 \in I$, then there are finitely many $f_{1}, \ldots, f_{n} \in k[x]$ and an equation

$$
1=g_{1} f_{1}\left(x_{f_{1}}\right)+\ldots+g_{n} f_{n}\left(x_{f_{n}}\right),
$$

with $g_{i} \in A$.
There is a finite extension $K$ of $k$ in which every $f_{i}$ has a zero, say $a_{i}$. Then there is a ring homomorphism $\pi: A \rightarrow K$ with $\pi\left(x_{f_{i}}\right)=a_{i}$ and $\pi\left(x_{f}\right)=0$ if $f \neq f_{1}, \ldots, f_{n}$. Then $\pi\left(f_{i}\left(x_{f_{i}}\right)\right)=0$, so that in $K$ we have $1=0$. This contradiction shows that $1 \in I$.
(ii) $M$ exists, by Zorn's lemma (see previous examples sheet). $\Omega$ contains $k$ and every non-constant polynomial in $k[x]$ has a zro in $\Omega$.

