GROUPS, RINGS AND MODULES (EXAMPLE SHEET 2)

NIS-B, Lent 2008

As usual, avoid using the hints as far as possible. If you can do all the starred questions then you will be in good shape for the exam.

- (1) Given a ring A and an indeterminate X, denote the ring of formal power series in X with coefficients in A by A[[X]]. So a typical element is an infinite sum $\sum_{n=0}^{\infty} a_n X^n$ with $a_n \in A$. These are added, subtracted and multiplied in a purely algebraic way; there is no question of convergence. (This means that we cannot evaluate $\sum_{0}^{\infty} a_{n}X^{n}$ at a value of X, except at X = 0.)

 (i*) Show that $\sum_{0}^{\infty} a_{n}X^{n}$ is a unit if and only if a_{0} is a unit in A.
 - Suppose that A is Noetherian.
- (ii*) Show that $\sum_{n=0}^{\infty} a_n X^n$ is nilpotent if and only if every a_n is nilpotent.
 - (iii) Show that A[X] is Noetherian.

[Hint: Suppose that J is an ideal in A[X]]. Mimic the proof of the Hilbert Basis Theorem, but use terms of lowest degree instead of highest. So define I_0 to be the subset of A consisting of constant coefficients of elements of J, I_1 the subset of A consisting of the linear coefficients when the constant term is zero, and so on. Check that the I_n 's are ideals of A and form an ascending chain. So $I_m = I_{m+1} = \dots$ for some m. Pick finitely many generators $a_{0,i}$ of I_0 and corresponding power series $p_{0,i}$, and do the same for each of $I_1, ..., I_m$. Show that the finite set $p_{j,i}$, where j = 0, ..., m, generates J.

- (2) Suppose that p is prime.
 - (i*) Show that $\mathbb{Z}[X]/(X-p) \cong \mathbb{Z}$.
- (ii) If you know about the p-adic integers \mathbb{Z}_p , show that $\mathbb{Z}[[X]]/(X$ $p)\cong \mathbb{Z}_p.$
- (3*) (i) State a structure theorem for finitely generated modules over a Euclidean domain A and explain how to derive it from a theorem about matrices over A. Explain how to prove this theorem.

- (ii) In terms of your structure theorem from (i), describe the abelian group with generators $e_1, ..., e_4$ and relations $2e_1+3e_2+4e_3=5e_2+6e_3+7e_4=0$.
- (iii) State and solve many more problems like (ii). I suggest problems with 4 or 5 generators and 3 or 4 relations, where the coefficients are single-digit integers.
- (iv) A module M over a ring A is torsion-free if an equation am = 0 implies either a = 0 or m = 0. Show that a finitely generated torsion-free \mathbb{Z} -module M is free. Is this true for all torsion-free \mathbb{Z} -modules, or for all finitely generated modules over arbitrary Noetherian rings?
- (4) The definition in lectures of "Euclidean domain" involves a function ϕ : $A \{0\} \to \mathbb{N}$ such that whenever $a, b \in A$ with $b \neq 0$, we can write a = bq + r with either r = 0 or $\phi(r) < \phi(b)$. Some authors demand also that $\phi(xy) \geq \phi(x)$; show that the two definitions are essentially equivalent. [This is made precise, and a careful argument given, in the Wikipedia article on Euclidean domains. Look it up and read it.]
- (5*) (i) Suppose that $\alpha \in \mathbb{C}$ is algebraic; that is, α is a zero of a non-trivial polynomial over \mathbb{Q} . Suppose that $f \in \mathbb{Z}[X]$ is its primitive minimal polynomial. Prove that the kernel of the homomorphism $\pi : \mathbb{Z}[X] \to \mathbb{Z}[\alpha]$ defined by $\pi(X) = \alpha$ has kernel equal to the principal ideal (f) and deduce that $\mathbb{Z}[\alpha] \cong \mathbb{Z}[X]/(f)$.
- (ii) Generalize this by replacing \mathbb{Z} by any Noetherian UFD and α by any element of a field L that contains the field K of fractions of A, such that α is algebraic over K.
- (6) Suppose that A is a Noetherian ring.
- (i*) The nilradical of A, denoted r(A), is the set of $x \in A$ such that $x^n = 0$ for some n. Prove that r(A) is the intersection of the prime ideals of A. [Hint: Suppose $x \notin r(A)$. Consider the set S of ideals that contain no power of x and show that every maximal element of S is prime.]
- (ii*) Suppose that P is a maximal ideal of A and that I is an ideal with $\sqrt{I} = P$. Show that I is primary. [Hint: P/I is the nilradical of A/I, so, by (i), is the unique prime ideal of A/I. So every element of A/I is either a unit or nilpotent, so that every zero-divisor in A/I is nilpotent.]
- (iii) Suppose that A is a domain and that every prime ideal is principal. Show that A is a PID. [Hint: Prove first that every non-zero prime ideal is maximal. Then observe that if $P = \sqrt{I}$ is maximal, then P is the unique prime ideal containing I. Prove next that every primary ideal is principal, then, via the existence of primary decompositions, that every irreducible element of A is prime. Conclude by using primary decompositions again.]

(7) Zorn's Lemma (in fact equivalent to the Axiom of Choice, so don't try to prove it, it's really an axiom) states that if (S, \leq) is a non-empty partially ordered set and if every totally ordered subset T of S has an upper bound in S, then S has a maximal element s_0 . ["Partially ordered" means the following three things: $x \leq x$; if $x \leq y$ and $y \leq z$, then $x \leq z$; and if $x \leq y$ and $y \leq x$, then x = y. "Totally ordered" means that for any two elements x, y of T, either $x \leq y$ or $y \leq x$. "Upper bound in S" means that there exists $s \in S$ such that $t \leq s$ for all $t \in T$. "Maximal" means that if $s_0 \leq s$, then $s_0 = s$.]

Use Zorn's lemma to show that every ring has a maximal ideal.

- (8) Show that a ring A in which every prime ideal is finitely generated is Noetherian. [Hint: Suppose A is not Noetherian and take S to be the set of ideals that are not finitely generated. Show, via Zorn, that S has a maximal element and that the maximal elements of S are prime, as follows. Suppose that I is maximal in S and $x, y \notin I$, $xy \in I$. Show that there is a finitely generated ideal $I_0 \subset I$ such that $I + (x) = I_0 + (x)$ and that $I = I_0 + x \cdot (I : x)$, where $(I : x) = \{z \in A | xz \in I\}$. Since (I : x) is strictly bigger than I, it is finitely generated, and therefore so is I.]
- (9) Suppose that M is an abelian group, not necessarily finitely generated. Suppose that there is a function $h: M \to \mathbb{R}_{\geq 0}$ (called a height function) and an integer $m \geq 2$ such that
- (i) for every $Q \in M$ there is a constant C_1 , depending on Q, such that $h(P+Q) \leq 2h(P) + C_1$ for all $P \in M$;
- (ii) there is a constant C_2 such that $h(mP) \geq m^2 h(P) C_2$ for all $P \in M$:
 - (iii) for all $C_3 \in \mathbb{R}$, the set $\{P \in M | h(P) \leq C_3\}$ is finite;
 - (iv) M/mM is finite.

Prove that M is, in fact, finitely generated.

[Hint: Choose finitely many $Q_i \in M$ representing the finitely many elements of M/mM. Then take $P \in M$, and show that by subtracting a suitable \mathbb{Z} -linear combination of the Q_i you can get $P' \in M$ with h(P') less than some constant that is independent of P.]

The ring A of symmetric polynomials in $X_1, ..., X_n$ with coefficients in \mathbb{Z} is, by definition, the set of all \mathbb{Z} -polynomials in the X_i that are invariant under all permutations of the X_i . For example, $X_1 + X_2$ is symmetric, but $X_1 + X_2^2$ is not. The next question asks you to prove that A is a polynomial ring $\mathbb{Z}[\sigma_1, \ldots, \sigma_n]$ in the so-called elementary symmetric functions $\sigma_i = \sigma_i(X_1, \ldots, X_n)$, defined by the identity

$$\prod_{1}^{n} (T - X_i) = T^n - \sigma_1 T^{n-1} + \sigma_2 T^{n-2} - \dots + (-1)^n \sigma_n,$$

where T is a further indeterminate. This result goes back to Newton.

- (10) (i) Prove that $\mathbb{Z}[\sigma_1, \ldots, \sigma_n] \subset A$.
- (ii) Define the lexicographic ordering \leq_{lex} on the set of monomials in the X_i by

$$X_1^{p_1}...X_n^{p_n} \leq_{lex} X_1^{q_1}...X_n^{q_n}$$

if and only if for some r we have $p_i = q_i$ for all i < r and $p_r > q_r$. Say $M <_{lex} N$ if $M \leq_{lex} N$ and $M \neq N$. Show that this is a total ordering; that is, given any two monomials M, N, exactly one of M = N, $M <_{lex} N$ and $N <_{lex} M$ is true.

- (iii) Suppose that $0 \neq f \in A$ and that $M = X_1^{p_1}...X_n^{p_n}$ is the lexicographically least monomial that appears in f and that λ is the coefficient of M in f. By using the fact that f is invariant under the transposition (i, i+1), show that $p_i \geq p_{i+1}$ for all i.
- (iv) Prove, by induction on the degree, that every element f of A lies in $\mathbb{Z}[\sigma_1,\ldots,\sigma_n]$. [Hint: consider $f-\lambda\sigma_1^{p_1-p_2}\sigma_2^{p_2-p_3}...\sigma_{n-1}^{p_{n-1}-p_n}\sigma_n^{p_n}.]$
- (v) Prove that the σ_i are algebraically independent. [Hint: Use induction on n. Assume that $h(\sigma_1,...,\sigma_n)=0$ is a polynomial relation of minimal non-zero degree. For $i \leq n-1$, put $\tau_i = \sigma_i|_{X_n=0}$, so that $\mathbb{Z}[\tau_1,...,\tau_{n-1}]$ is the ring of symmetric polynomials in the n-1 variables $X_1,...,X_{n-1}$. By the induction hypothesis, the τ_i are algebraically independent, so that h is divisible by σ_n . Divide by σ_n to conclude.]
- (11) This question asks you to show the power sums $p_i = \sum_{j=1}^n X_j^i$ will do as well as the σ_i , provided that \mathbb{Z} is replaced by \mathbb{Q} .

Introduce a further indeterminate x and put

$$f(x) = \sum_{i=0}^{n} \sigma_i (-1)^i x^{n-i},$$

where $\sigma_0 = 1$, by definition.

- (i) Factorize f in $\mathbb{Z}[X_1,\ldots,X_n][x]$.
- (ii) Regard x as a complex number, and show that if |x| is large enough, then

$$\frac{xf'(x)}{f(x)} = \sum_{1 \le k \le n} \frac{1}{1 - X_k/x} = \sum_{j \ge 0} p_j x^{-j}.$$

[Hint: look at the derivative of $\log \prod_i (x - X_i)$.]

(iii) Deduce that $p_1 = \sigma_1, p_2 = p_1 \sigma_1 - 2\sigma_2, \ldots$

$$p_{n-1} = p_{n-2}\sigma_1 - p_{n-3}\sigma_2 + \dots - (-1)^n p_1\sigma_{n-2} + (-1)^n (n-1)\sigma_{n-1}$$

and

$$p_k = p_{k-1}\sigma_1 - p_{k-2}\sigma_2 + \ldots - (-1)^n p_{k-n}\sigma_n \quad (k \ge n).$$

- (iv) Use the result $A = \mathbb{Z}[\sigma_1, ..., \sigma_n]$ from the previous question to deduce that the ring of symmetric polynomials in $X_1, ..., X_n$ with coefficients in \mathbb{Q} is $\mathbb{Q}[p_1, ..., p_n]$.
- (12*) Suppose that ϕ is an endomorphism of the finite-dimensional complex vector space V. We say that ϕ is *semi-simple* if it can be diagonalized, and *nilpotent* if $\phi^n = 0$ for some n.
- (i) Show that $\phi = \phi_s + \phi_n$ with ϕ_s semi-simple, ϕ_n nilpotent and $\phi_s \phi_n = \phi_n \phi_s$. [Hint: Jordan normal form.]
- (ii) Show that there are polynomials $p, q \in \mathbb{C}[T]$, depending on ϕ , with zero constant term, such that $p(\phi)$ is semi-simple, $q(\phi)$ is nilpotent and $\phi = p(\phi) + q(\phi)$.

[Hint: Suppose that the distinct eigenvalues of ϕ are $a_1, ..., a_r$, with multiplicities $m_1, ..., m_r$. So the characteristic polynomial of ϕ is $\prod (T - a_i)^{m_i}$ and $V = \oplus V_i$, where V_i is the kernel of $(\phi - a_i)^{m_i}$. Apply the Chinese Remainder Theorem to the PID $\mathbb{C}[T]$ to deduce the existence of $p(T) \in \mathbb{C}[T]$ satisfying all the congruences $p(T) \equiv a_i \mod (T - a_i)^{m_i}$ and $p(T) \equiv 0 \pmod T$. Define p(T) = T - p(T) and define p(T) = p(T). Show that p(T) = p(T) and p(T) = p(T) and are, respectively, semi-simple and nilpotent on each p(T) = p(T).

(iii) Show that the decomposition in (i) is unique.