GRrRouUPS, RINGS AND MODULES
(EXAMPLE SHEET 2)

NIS-B, Lent 2008

As usual, avoid using the hints as far as possible. If you can do all the
starred questions then you will be in good shape for the exam.

(1) Given a ring A and an indeterminate X, denote the ring of formal power
series in X with coefficients in A by A[[X]]. So a typical element is an infinite
sum Y o° a, X" with a, € A. These are added, subtracted and multiplied in
a purely algebraic way; there is no question of convergence. (This means
that we cannot evaluate Y, a, X" at a value of X, except at X = 0.)

(i*) Show that Y o a,X™ is a unit if and only if a, is a unit in A.

Suppose that A is Noetherian.

(ii*) Show that Y _° a, X™ is nilpotent if and only if every a,, is nilpo-
tent.

(iii) Show that A[[X]] is Noetherian.

[Hint: Suppose that J is an ideal in A[[X]]. Mimic the proof of the
Hilbert Basis Theorem, but use terms of lowest degree instead of highest. So
define I to be the subset of A consisting of constant coefficients of elements
of J, I the subset of A consisting of the linear coefficients when the constant
term is zero, and so on. Check that the I,,’s are ideals of A and form an as-
cending chain. So I,, = I,,11 = ... for some m. Pick finitely many generators
ap; of Iy and corresponding power series pg;, and do the same for each of
I, ..., I,. Show that the finite set p;;, where j =0, ..., m, generates J.|

(2) Suppose that p is prime.

(i*) Show that Z[X]/(X — p) 2 Z.

(ii) If you know about the p-adic integers Z
p) = Z,.
(3*%) (i) State a structure theorem for finitely generated modules over a Eu-
clidean domain A and explain how to derive it from a theorem about matrices
over A. Explain how to prove this theorem.

show that Z[[X]]/(X —

Y2



(ii) In terms of your structure theorem from (i), describe the abelian
group with generators ey, ..., e4 and relations 2e; +3e,+4e3 = bea+6e3+Tey =
0.

(iii) State and solve many more problems like (ii). I suggest problems
with 4 or 5 generators and 3 or 4 relations, where the coefficients are single-
digit integers.

(iv) A module M over a ring A is torsion-free if an equation am = 0
implies either a = 0 or m = 0. Show that a finitely generated torsion-free
Z-module M is free. Is this true for all torsion-free Z-modules, or for all
finitely generated modules over arbitrary Noetherian rings?

(4) The definition in lectures of “Euclidean domain” involves a function ¢ :
A—{0} — N such that whenever a,b € A with b # 0, we can write a = bg+7
with either 7 = 0 or ¢(r) < ¢(b). Some authors demand also that ¢(zy) >
¢(z); show that the two definitions are essentially equivalent. [This is made
precise, and a careful argument given, in the Wikipedia article on Euclidean
domains. Look it up and read it.]

(5%) (i) Suppose that « € C is algebraic; that is, « is a zero of a non-
trivial polynomial over Q. Suppose that f € Z[X] is its primitive minimal
polynomial. Prove that the kernel of the homomorphism 7 : Z[X]| — Z[a]
defined by 7(X) = « has kernel equal to the principal ideal (f) and deduce
that Z[a] = Z[X]/(f).

(ii) Generalize this by replacing Z by any Noetherian UFD and « by
any element of a field L that contains the field K of fractions of A, such that
« is algebraic over K.

(6) Suppose that A is a Noetherian ring.

(i*) The nilradical of A, denoted r(A), is the set of z € A such that
™ = 0 for some n. Prove that r(A) is the intersection of the prime ideals of
A. [Hint: Suppose x ¢ r(A). Consider the set S of ideals that contain no
power of z and show that every maximal element of S is prime.]

(ii*) Suppose that P is a maximal ideal of A and that I is an ideal
with /T = P. Show that I is primary. [Hint: P/I is the nilradical of A/I,
so, by (i), is the unique prime ideal of A/I. So every element of A/I is either
a unit or nilpotent, so that every zero-divisor in A/I is nilpotent.]

(iii) Suppose that A is a domain and that every prime ideal is principal.
Show that A is a PID. [Hint: Prove first that every non-zero prime ideal is
maximal. Then observe that if P = v/I is maximal, then P is the unique
prime ideal containing /. Prove next that every primary ideal is principal,
then, via the existence of primary decompositions, that every irreducible
element of A is prime. Conclude by using primary decompositions again.|



(7) Zorn’s Lemma (in fact equivalent to the Axiom of Choice, so don’t try to
prove it, it’s really an axiom) states that if (S, <) is a non-empty partially
ordered set and if every totally orderd subset 7" of S has an upper bound in S,
then S has a maximal element sy. [“Partially ordered” means the following
three things: ¢ < z;if x <y and y < z, then z < z; and if z < y and y < x,
then x = y. “Totally ordered” means that for any two elements x,y of T,
either x < y or y < z. “Upper bound in S” means that there exists s € S
such that t < s for all t € T. “Maximal” means that if sy < s, then sy = s.]
Use Zorn’s lemma to show that every ring has a maximal ideal.

(8) Show that a ring A in which every prime ideal is finitely generated is
Noetherian. [Hint: Suppose A is not Noetherian and take S to be the set of
ideals that are not finitely generated. Show, via Zorn, that S has a maximal
element and that the maximal elements of S are prime, as follows. Suppose
that [ is maximal in S and z,y ¢ I, xy € I. Show that there is a finitely
generated ideal Iy C I such that [+ (z) = Iy+ () and that I = Iy+z.(I : z),
where (I : ) = {z € Alzz € I}. Since (I : x) is strictly bigger than I, it is
finitely generated, and therefore so is I.]

(9) Suppose that M is an abelian group, not necessarily finitely generated.
Suppose that there is a function h : M — Ry (called a height function) and
an integer m > 2 such that

(i) for every @ € M there is a constant C, depending on @), such that
h(P + Q) < 2h(P)+ C, for all P € M;

(i) there is a constant Cy such that h(mP) > m2h(P) — Cy for all
P e M;

(iii) for all Cy € R, the set {P € M|h(P) < Cs} is finite;

(iv) M/mM is finite.

Prove that M is, in fact, finitely generated.

[Hint: Choose finitely many @); € M representing the finitely many
elements of M/mM. Then take P € M, and show that by subtracting a
suitable Z-linear combination of the @; you can get P’ € M with h(P’) less
than some constant that is independent of P.]

The ring A of symmetric polynomials in X7, ..., X, with coefficients in
7 is, by definition, the set of all Z-polynomials in the X; that are invari-
ant under all permutations of the X;. For example, X; + X5 is symmetric,
but X; + X2 is not. The next question asks you to prove that A is a poly-
nomial ring Z[oy,...,0,] in the so-called elementary symmetric functions
o; = 0;(X1,...,X,), defined by the identity

[[(T-X)=T" -1 T" ' + 027" % = ..+ (—1)"0n,
1



where 7T is a further indeterminate. This result goes back to Newton.

(10) (i) Prove that Z[oy,...,0,] C A.
(ii) Define the lezicographic ordering <., on the set of monomials in
the X; by
XPULXPr <y XO X0

if and only if for some r we have p; = ¢; for all + < r and p, > ¢.. Say
M <oy N if M <je, N and M # N. Show that this is a total ordering; that
is, given any two monomials M, N, exactly one of M = N, M <., N and
N <jez M is true.

(iii) Suppose that 0 # f € A and that M = XP'...XP is the lexico-
graphically least monomial that appears in f and that A is the coefficient
of M in f. By using the fact that f is invariant under the transposition
(1,7 + 1), show that p; > p;1 for all 4.

(iv) Prove, by induction on the degree, that every element f of A lies
in Z[oy,...,0,). [Hint: consider f — Ao} P2ab> P2 gl 7P gPn |

(v) Prove that the o; are algebraically independent. [Hint: Use induc-
tion on n. Assume that h(oy,...,0,) = 0 is a polynomial relation of minimal
non-zero degree. For i < n — 1, put 7; = 0y|x,—0, so that Z[r, ..., 7, 1] is
the ring of symmetric polynomials in the n — 1 variables Xy, ..., X,, ;. By
the induction hypothesis, the 7; are algebraically independent, so that h is
divisible by o,. Divide by o, to conclude.]

(11) This question asks you to show the power sums p; = Z?Zl X ; will do as
well as the o;, provided that Z is replaced by Q.
Introduce a further indeterminate x and put

E znz
O-Z Y

where o¢g = 1, by definition.
(i) Factorize f in Z[ Xy, ..., X,][z].
(ii) Regard z as a complex number, and show that if |z| is large enough,

then
zf'(r) _ j
fl@) > 1—Xk/x ZW '

1<k<n

[Hint: look at the derivative of log[[,(z — XZ)]
(iii) Deduce that p; = 01, ps = p1o1 — 209, .. .,

Pn—1 = Pn—201 — Pp—302 + ... — (—1)"p10n—2 + (—1)n(n - 1)0n—1

and
Pk = Pg—101 — Pp—209 + ... — (_1)npk7no'n (k > n)



(iv) Use the result A = Zloy,...,0,] from the previous question to
deduce that the ring of symmetric polynomials in X1, ..., X, with coefficients

in Q is Qlpi, . ., o).

(12*) Suppose that ¢ is an endomorphism of the finite-dimensional complex
vector space V. We say that ¢ is semi-simple if it can be diagonalized, and
nilpotent if ¢" = 0 for some n.

(i) Show that ¢ = ¢+ ¢, with ¢, semi-simple, ¢, nilpotent and ¢¢,, =
¢nds. [Hint: Jordan normal form.|

(ii) Show that there are polynomials p,q € C[T], depending on ¢,
with zero constant term, such that p(¢) is semi-simple, g(¢) is nilpotent and
¢ =p(9) + a(9).

[Hint: Suppose that the distinct eigenvalues of ¢ are ay, ..., a,, with
multiplicities my, ..., m,. So the characteristic polynomial of ¢ is [[(T —a;)™
and V = @V, where V; is the kernel of (¢ — a;)™. Apply the Chinese
Remainder Theorem to the PID C[T’] to deduce the existence of p(T) € C[T]
satisfying all the congruences p(T) = a; modulo (T — a;)™ and p(T) = 0
(mod T'). Define ¢(7') = T—p(T') and define ¢5 = p(¢), ¢, = q(4). Show that
¢s and ¢, preserve each V; and are, respectively, semi-simple and nilpotent
on each V;.|

(iii) Show that the decomposition in (i) is unique.



