Lent Term 2006 C.J.B. Brookes

IB Groups, Rings and Modules: Example Sheet 3

- 1. For each of the following rings, determine whether it is a field, a PID, a UFD, an ID: (i) $\mathbb{Z}[X]$; (ii) $\mathbb{Z}[X]/(X^2+1)$; (iii) $\mathbb{Z}[X]/(2,X^2+1)$; (iv) $\mathbb{Z}[X]/(2,X^2+X+1)$; (v) $\mathbb{Z}[X]/(3,X^2+1)$.
- 2. Let R be an integral domain. The *highest common factor* of non-zero elements a and b in R is an element d in R such that d divides both a and b, and if c divides both a and b then c divides d.
 - (i) Show that the highest common factor of a and b, if it exists, is unique up to multiplication by a unit.
 - (ii) Show that if R is a PID, the highest common factor d of elements a and b exists and can be written as d = ra + sb for some $r, s \in R$. [The ideals (a, b) and (d) in R are equal.]
 - (iii) Explain briefly how, if R is a Euclidean domain, the Euclidean algorithm can be used to find the highest common factor of any two non-zero elements.
- 3. (i) Show that $X^4 + 2X + 2$ and $X^4 + 18X^2 + 24$ are irreducible in $\mathbb{Q}[X]$.
 - (ii) Are $X^3 9$ and $X^4 8$ irreducible in $\mathbb{Q}[X]$?
 - (iii) Show that $X^4 + X^3 + X^2 + X + 1$ is irreducible in $\mathbb{Q}[X]$.
 - (iv) Are $X^3 + X^2 + X + 1$ and $X^4 + X^3 + X + 1$ irreducible in $\mathbb{Q}[X]$?
 - (v) Show that $X^4 + 1$ is irreducible in $\mathbb{Q}[X]$.
 - (vi) Show that $X^4 + 4$ factorizes in $\mathbb{Q}[X]$ into irreducible quadratic factors.
- 4. We see from Eisenstein's criterion that if p is prime then $X^{p-1} + \cdots + X + 1$ is irreducible in $\mathbb{Z}[X]$. Factorize $X^3 + X^2 + X + 1$ and $X^5 + X^4 + X^3 + X^2 + X + 1$ in $\mathbb{Z}[X]$. Suppose $X^{n-1} + \cdots + X + 1$ is irreducible in $\mathbb{Z}[X]$. Does it follow that n is prime?
- 5. (i) What are the units in the ring $\mathbb{Z}[i]$?
 - (ii) What are the primes in the ring $\mathbb{Z}[i]$?
 - (iii) What is the greatest common divisor in $\mathbb{Z}[i]$ of the elements 3-4i and 4+3i?
 - (iv) What is the greatest common divisor in $\mathbb{Z}[i]$ of the elements 11 + 7i and 18 i?
- 6. Find all possible ways of writing the following integers as sums of two squares: $221;209 \times 221;121 \times 221$.
- 7. (i) Show that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.
 - (ii) Show that $\mathbb{Z}[\frac{1}{2}(1+\sqrt{-3})]$ is a Euclidean domain (and hence a UFD).
 - (When $d \equiv 1 \pmod{4}$, the 'ring of integers' of the field $\mathbb{Q}[\sqrt{d}]$ is $\mathbb{Z}[\frac{1}{2}(1+\sqrt{d})]$ and not $\mathbb{Z}[\sqrt{d}]$.)
- 8. Let F be a finite field. Show that the prime subfield K (that is, the smallest subfield) of F has p elements for some prime number p. Show that F is a vector space over K and deduce that F has p^n elements for some n.
- 9. Let $F = \mathbb{F}_q$ be a finite field of q elements, let V be a vector space of dimension n over F.
 - (i) Show that V has q^n vectors. How many (ordered) bases does V have? Determine the order of the group $GL_n(\mathbb{F}_q)$ of all non-singular $n \times n$ matrices with entries in \mathbb{F}_q .
 - (ii) Show that the determinant homomorphism from $GL_n(\mathbb{F}_q)$ to $\mathbb{F}_q \setminus 0$ is surjective and hence find the order of the group $SL_n(\mathbb{F}_q)$ of all matrices in $GL_n(\mathbb{F}_q)$ of determinant 1.
- 10. Show that the set $SL_2(\mathbb{Z})$ of integer 2×2 matrices of determinant 1 is a group under multiplication. Show that there is a natural homomorphism from $SL_2(\mathbb{Z})$ to $SL_2(\mathbb{F}_p)$, the group of determinant 1 matrices with entries in $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Identify the kernel.

Additional Questions

- 11. (i) Consider the polynomial $f(X,Y) = X^3Y + X^2Y^2 + Y^3 Y^2 X Y + 1$ in $\mathbb{C}[X,Y]$. Write it as an element of $\mathbb{C}[X][Y]$, that is collect together terms in powers of Y, and then use Eisenstein's criterion to show that f is prime in $\mathbb{C}[X,Y]$.
 - (ii) Let F be any field. Show that the polynomial $f(X,Y) = X^2 + Y^2 1$ is irreducible in F[X,Y], unless F has characteristic 2. What happens in that case?
- 12. Show that the subring $\mathbb{Z}[\sqrt{2}]$ of \mathbb{R} is a Euclidean domain. Show that the units are $\pm (1 \pm \sqrt{2})^n$ for $n \geq 0$.
- 13. Let V be a 2-dimensional vector space over the field $F = \mathbb{F}_q$ of q elements, let Ω be the set of its 1-dimensional subspaces.
 - (i) Show that Ω has cardinality q+1 and $GL_2(\mathbb{F}_q)$ acts on it. Show that the kernel Z of this action consists of scalar matrices and the group $PGL_2(\mathbb{F}_q) = GL_2(\mathbb{F}_q)/Z$ has order $q(q^2-1)$. Show that the group $PSL_2(\mathbb{F}_q)$ obtained similarly from $SL_2(\mathbb{F}_q)$ has order $q(q^2-1)/d$ with d equal highest common factor of q-1 and 2.
 - (ii) Show that Ω can be identified with the set $\mathbb{F}_q \cup \infty$ in such a way that $GL_2(\mathbb{F}_q)$ acts on Ω as the group of Möbius transformations $z \mapsto \frac{az+b}{cz+d}$. Show that in this way $PSL_2(\mathbb{F}_q)$ is isomorphic to the group of Möbius transformations with ad-bc a square in \mathbb{F}_q .
- 14. Show that the groups $SL_2(\mathbb{F}_4)$ and $PSL_2(\mathbb{F}_5)$ defined above both have order 60. Use this and some questions from sheet 1 to show that they are both isomorphic to the alternating group A_5 . Show that $SL_2(\mathbb{F}_5)$ and $PGL_2(\mathbb{F}_5)$ both have order 120, that $SL_2(\mathbb{F}_5)$ is not isomorphic to S_5 , but $PGL_2(\mathbb{F}_5)$ is.

Comments and corrections should be sent to brookes@dpmms.cam.ac.uk.