IB Groups, Rings and Modules: Example Sheet 2

All rings in this course are commutative with a multiplicative identity.

- 1. Prove that the product $R_1 \times R_2$ of the rings R_1, R_2 is a ring under componentwise addition and multiplication.
- 2. (i) Let R be a ring. Recall that $r \in R$ is a *unit* if it has a multiplicative inverse in R. Show that the set of units in R is a group under multiplication.
 - (ii) An element r of R is *nilpotent* if $r^n = 0$ for some $n \ge 1$. Show that if r is nilpotent, then r is not a unit, but that both 1 + r and 1 r are units.
 - (iii) Prove that the nilpotent elements form an ideal in R.
 - (iv) If $a \in R$, show that 1 + aX is a unit in the polynomial ring R[X] if and only if a is nilpotent.
- 3. Show that if I and J are ideals in the ring R, then so is $I \cap J$, and the quotient $R/(I \cap J)$ is isomorphic to a subring of the product $R/I \times R/J$.
- 4. (i) Suppose that f: R→S is a ring homomorphism. Show that if J is an ideal in S, then f⁻¹(J) = {a ∈ R | f(a) ∈ J} is an ideal in R.
 (ii) What are the ideals in the ring Z? What are the ideals in the quotient ring Z/nZ?
 (iii) For which values of n and m is there a ring homomorphism φ : Z/nZ → Z/mZ? Is the homomorphism unique?
- 5. What are the subrings of the ring Z/12Z? What are the units in Z/12Z? What are the ideals in Z/12Z? Is Z/12Z a principal ideal domain?
 [Remember that a subring must contain the multiplicative identity of the ring, and that a principal ideal domain must be an integral domain.]
- 6. (i) Suppose f(X) ∈ R[X] is a polynomial with coefficients in the ring R and a ∈ R is such that f(a) = 0; show that f(X) = (X a)g(X) for some g(X) ∈ R[X]. Deduce that if R is an integral domain, then a polynomial f(X) ∈ R[X] of degree n has at most n roots in R.
 (ii) How many roots has X² − 1 in the ring Z/8Z? How many roots has 2X² − 2X in the ring Z/4Z? In how many essentially different ways can you factorize (X² − 1) ∈ R[X] into irreducibles when R = Z/8Z?
- 7. Let R be an integral domain and F be its field of fractions. Suppose that $\phi : R \to K$ is an injective ring homomorphism from R to a field K. Show that ϕ extends to an injective homomorphism $\overline{\phi} : F \to K$ from F to K. What happens if we do not assume that ϕ is injective?
- 8. (i) Show that the ideal (2, X) in Z[X] is not a principal ideal.
 (ii) Let R be any ring. Show that the ring R[X] is a principal ideal domain if and only if R is a field.
- 9. Let \mathbb{F}_p be the field of p elements. Show that $\mathbb{F}_p[X]/(X^3 + X + 1)$ is a field if p = 2 but not if p = 3.
- 10. (i) Show that the set of all subsets of a given set S is a ring with respect to the operations of symmetric difference and intersection. Note that in this ring $a^2 = a$ for all elements a. Describe the principal ideals in this ring.

(ii) Let R be any ring satisfying $a^2 = a$ for all elements a in R. Prove that R has characteristic 2, and that, for each prime ideal P, the ring R/P is isomorphic to the field of two elements. Show that any ideal of R generated by two elements is in fact a principal ideal, and deduce the same for every finitely generated ideal. Give an example to show that R may have an ideal which is not a principal ideal.

11. An element a of a ring is *idempotent* if $a^2 = a$. Show that the element e = (1,0) of $R_1 \times R_2$ is idempotent. Let the ring R contain an idempotent e other than 0 or 1. Show that e' = 1 - e is also an idempotent, and that ee' = 0. Show that the principal ideal eR generated by e is a ring with identity e. Show that R is isomorphic to the product ring $eR \times e'R$.

Additional Questions

- 12. (i) Show that a finite subgroup of the multiplicative group of a field is cyclic.
 [You can use the structure theorem for finite abelian groups a non-cyclic group will contain a subgroup C_p × C_p for some prime p.]
 (ii) Find a group transform the multiplicative group of the fields Z (rZ of a elements for a 5 and a 7).
 - (ii) Find a generator for the multiplicative group of the fields $\mathbb{Z}/p\mathbb{Z}$ of p elements for p = 5 and p = 7.

(iii) Show for odd p that -1 is a square modulo p if and only if p is congruent to 1 modulo 4.

13. A sequence $\{a_n\}$ of rational numbers is a *Cauchy sequence* if $|a_n - a_m| \to 0$ as $m, n \to \infty$, and $\{a_n\}$ is a *null sequence* if $a_n \to 0$ as $n \to \infty$. Quoting any standard results from Analysis, show that the Cauchy sequences with componentwise addition and multiplication form a ring C, and that the null sequences form a maximal ideal N.

Deduce that C/N is a field, with a subfield which may be identified with \mathbb{Q} . Explain briefly why the equation $x^2 = 2$ has a solution in this field.

- 14. Let ϖ be a set of prime numbers. Write \mathbb{Z}_{ϖ} for the collection of all rationals m/n (in lowest terms) such that the only prime factors of the denominator n are in ϖ .
 - (i) Show that \mathbb{Z}_ϖ is a subring of the field \mathbb{Q} of rational numbers.
 - (ii) (More challenging?) Show that any subring R of \mathbb{Q} is of the form \mathbb{Z}_{ϖ} for some set ϖ of primes.
 - (iii) Given (ii), what are the maximal subrings of \mathbb{Q} ?
- 15. Let F be a field, and let R = F[X, Y] be the polynomial ring in two variables.
 (i) Let I be the principal ideal generated by the element X − Y in R. Show that R/I ≅ F[X].
 (ii) What can you say about R/I when I is the principal ideal generated by X² + Y?
 (iii) What can you say about R/I when I is the principal ideal generated by X² + Y?
 - (iii) [Harder] What can you say about R/I when I is the principal ideal generated by $X^2 Y^2$?
- 16. Recall that \mathbb{F}_p is the field with p elements. Show that in the polynomial ring $\mathbb{F}_p[X]$ the polynomials

$$\prod_{r=0}^{p-1} (X-r) \quad \text{and} \quad X^p - X$$

have the same p distinct roots, and hence must be equal. Deduce Wilson's Theorem that $(p-1)! \equiv -1 \pmod{p}$. Can you calculate the sum

$$\sum_{\substack{r\neq s\\r,s\neq 0}}^{p-1} rs \pmod{p} ?$$

Comments and corrections should be sent to brookes@dpmms.cam.ac.uk.