## **IB GEOMETRY EXAMPLES 4**

## G.P. Paternain Lent 2023

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Show that a non-identity Möbius transformation T has exactly one or two fixed points in  $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ . Show that if T corresponds, under stereographic projection, to a rotation of  $S^2$ , then it has two fixed points  $z_i$  which satisfy  $z_2 = -1/\bar{z}_1$ . If  $T \in M$ öb has two fixed points  $z_i$  and  $z_2 = -1/\bar{z}_1$ , prove that either T corresponds to a rotation, or one of the two fixed points (say  $z_1$ ) is attractive, i.e.  $T^n(z) \to z_1$  for all  $z \neq z_2$  as  $n \to \infty$ .

**2**. (a) Show that inversion in the circle  $\{|z - a| = r\}$  is given by  $z \mapsto a + \frac{r^2}{\overline{z} - \overline{a}}$ .

(b) Show that every Möbius map is a composition of inversions.

**3**. Show from first principles that a vertical line segment is length-minimizing and hence defines a geodesic in the hyperbolic upper half-plane, i.e. the upper half-plane with the abstract metric  $\frac{dx^2+dy^2}{y^2}$ .

4. Let  $z_1, z_2$  be distinct points in the upper half plane  $\mathfrak{h}$ . Suppose that the hyperbolic line through  $z_1$  and  $z_2$  meets the real axis at points  $w_1$  and  $w_2$ , where  $z_1$  lies on the hyperbolic line segment  $w_1 z_2$  (and where one  $w_i$  may be  $\infty$ ). Show that the hyperbolic distance  $d_{hyp}(z_1, z_2) = \log r$ , where r is the cross-ratio of the four points  $z_1, z_2, w_1, w_2$  taken in an appropriate order

5. (a) Let  $P \in S^2 \subset \mathbb{R}^3$  be a point on the round sphere. The spherical circle with centre P and radius  $\rho$  is the set  $\{w \in S^2 | d_{sph}(w, P) = \rho\}$ , where  $d_{sph}$  is the spherical metric (induced by the first fundamental form of the embedding). Prove that a spherical circle of radius  $\rho$  is a Euclidean circle. Prove that its circumference is  $2\pi \sin(\rho)$  and that it bounds a disc on  $S^2$  of area  $2\pi(1 - \cos(\rho))$ .

(b) Let  $C \subset \mathfrak{h}$  be a hyperbolic circle with centre  $p \in \mathfrak{h}$  and radius  $\rho$ , i.e. the locus  $\{w \in \mathfrak{h} \mid d_{hyp}(w, p) = \rho\}$  for some  $\rho > 0$ . Show that C is a Euclidean circle. If p = ic for  $c \in \mathbb{R}_{>0}$ , find the centre and radius of C as a Euclidean circle. Show the hyperbolic circumference of C is  $2\pi \sinh(\rho)$ , and the hyperbolic area of the disc it bounds is  $2\pi(\cosh(\rho) - 1)$ . Deduce that no hyperbolic triangle contains a hyperbolic circle of radius  $> \cosh^{-1}(3/2)$ .

(c) Show that there is some  $\delta > 0$  such that, in any hyperbolic triangle, the union of the  $\delta$ -neighbourhoods of two of the sides completely contains the 3rd side. (Does such a  $\delta$  exist for triangles in the Euclidean plane?)

**6**. Fix a hyperbolic triangle  $\Delta \subset \mathbb{H}^2$  with interior angles A, B, C and side lengths (in the hyperbolic metric) a, b, c, where a is the side opposite the vertex with angle A, etc.

(a) Suppose that C is a right-angle. By applying the 'hyperbolic cosine' formula in two different ways, prove that

$$\sin(A)\sinh(c) = \sinh(a).$$

(b) Deduce that for a general hyperbolic triangle, one has

$$\frac{\sin(A)}{\sinh(a)} = \frac{\sin(B)}{\sinh(b)} = \frac{\sin(C)}{\sinh(c)}$$

7. (a) Show that two hyperbolic lines have a common perpendicular if and only if they are ultraparallel, and that in this case the common perpendicular is unique. Show that, up to isometry, for t > 0 there is a unique configuration of ultraparallel lines for which the segment of the common perpendicular between the lines has length t.

(b) Let  $l_1, l_2$  be ultraparallel hyperbolic lines, and let  $r_{l_i}$  denote the hyperbolic isometry given by reflection in  $l_i$ . Prove that  $r_{l_1} \circ r_{l_2}$  has infinite order.

8. (a) Consider the 'ideal' hyperbolic square with vertices at  $0, 1, \infty, -1$  in the upper half-plane model. By gluing the edges of the square by isometries, or otherwise, prove that there is a *complete* hyperbolic metric on the smooth surface  $S^2 \setminus \{p, q, r\}$  given by the complement of 3 distinct points in the sphere.

(b) Construct a non-orientable compact hyperbolic surface.

**9.** Consider stereographic projection from the north pole  $\pi_+ : S^2 \setminus \{(0,0,1)\} \to \mathbb{R}^2$ . Note that it defines a diffeomorphism from the southern hemisphere  $S_-^2 = \{(x, y, z) \in S^2 : z < 0\}$  to the unit disc  $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ . Let  $p : \mathbb{R}^3 \to \mathbb{R}^2$  denote the projection p(x, y, z) = (x, y). Show that the diffeomorphism

$$f := p \circ \pi_+^{-1} : \mathbb{D} \to \mathbb{D}$$

has the expression

$$f(\xi) = \frac{2\xi}{|\xi|^2 + 1},$$

where  $\xi = x + iy$ . The Beltrami-Klein model of hyperbolic geometry is obtained by equipping  $\mathbb{D}$  with the Riemannian metric  $g_K$  such that  $f : (\mathbb{D}, g_{hyp}) \to (\mathbb{D}, g_K)$  is an isometry, where  $g_{hyp}$  is the hyperbolic metric in the disk. Show that hyperbolic lines in the Beltrami-Klein model are the (Euclidean) straight line segments contained in the disc  $\mathbb{D}$ . (You may use that  $\pi_+$  is a conformal map that takes circles on the sphere to lines and circles in the plane.)

10. Let  $\Sigma$  be an abstract compact hyperbolic surface. Let  $\gamma_1$  and  $\gamma_2$  be simple *closed* geodesics on  $\Sigma$ , i.e. the images of smooth embeddings  $\gamma_i : S^1 \to \Sigma$  which everywhere satisfy the geodesic equations. Prove that the disjoint union  $\gamma_1 \sqcup \gamma_2$  cannot be the boundary of an embedded cylinder in  $\Sigma$  (i.e. a smooth subsurface homeomorphic to  $S^1 \times [0, 1]$ .

Construct a compact abstract hyperbolic surface  $\Sigma$ , and disjoint simple closed geodesics  $\gamma_i \subset \Sigma$ , for which  $\gamma_1 \sqcup \gamma_2$  bounds an embedded subsurface  $\Sigma'$  of  $\Sigma$  homeomorphic to the complement of two disjoint discs in a torus. Can this happen if  $\Sigma$  has genus two? Briefly justify your answer.