## **IB GEOMETRY EXAMPLES 1**

## G.P. Paternain Lent 2023

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

**1**. Show that a topological surface is connected if and only if it is path-connected.

**2**. (a) Prove that the cone  $\{x^2 + y^2 = z^2\} \subset \mathbb{R}^3$  is not a topological surface.

(b) Let X be the space obtained from the disjoint union  $\mathbb{R}^2_a \sqcup \mathbb{R}^2_b$  of two copies of the plane  $\mathbb{R}^2$ , labelled by a and b, by identifying  $(x, y) \in \mathbb{R}^2_a$  with  $(x, y) \in \mathbb{R}^2_b$  whenever  $(x, y) \neq (0, 0)$ . Show that X is a topological space in which every point has an open neighbourhood homeomorphic to  $\mathbb{R}^2$ , but which is not a topological surface.

(c) Let  $\Sigma$  be a topological surface, and let  $\mathbb{R}_{\delta}$  denote the real numbers with the *discrete* topology. Show that  $\Sigma \times \mathbb{R}_{\delta}$  is a topological space in which every point has an open neighbourhood homeomorphic to  $\mathbb{R}^2$ , but which is not a topological surface.

**3**. The torus  $T^2$  and Klein bottle K are the topological surfaces obtained as identification spaces of a quadrilateral, as indicated in the figure.

(a) Construct a continuous surjection  $p: T^2 \to T^2$  from the torus to itself such that for every  $x \in T^2$ ,  $p^{-1}(x)$  consists of exactly two points, and such that p is a 'local homeomorphism', so for every  $p \in T^2$  there is an open neighbourhood  $U \ni p$  for which  $p|_U: U \to p(U) \subset T^2$  is a homeomorphism to its image. [Such a map is called a *covering map.*]

(b) Show that  $T^2$  also admits a covering map  $\hat{p}: T^2 \to K$  to the Klein bottle (again with the properties that  $\hat{p}^{-1}(x)$  consists of two points for each  $x \in K$  and  $\hat{p}$  is a local homeomorphism).

(c) Give three pairwise non-conjugate subgroups  $\mathbb{Z}_2 \leq \text{Homeo}(T^2)$  of the group, under composition of maps, of homeomorphisms from  $T^2$  to itself.



4. Draw inside the identification square for the Klein bottle K the set of points in which the 'usual' map  $f: K \to \mathbb{R}^3$  (as drawn on the right above) fails to be injective. By considering a map  $h = (f, \eta) : K \to \mathbb{R}^3 \times \mathbb{R}$ , where  $\eta$  is a function of the width co-ordinate of the square, explain why K can be continuously embedded in  $\mathbb{R}^4$ , i.e. there is a continuous map  $K \to \mathbb{R}^4$  which is a homeomorphism to its image. [You do not need an explicit formula for f. Many helpful pictures can be found at https://en.wikipedia.org/wiki/Klein\_bottle.]

5. (a) Consider a decomposition of a topological surface into polygons (with V vertices, E edges and F faces), where all vertices have valence  $\geq 3$  and every face contains  $\geq 3$  vertices (and every edge is an edge of exactly two faces). Let  $F_n$  denote the number of faces bound by precisely n edges, and  $V_m$  the number of vertices where precisely m edges meet. Show that  $\sum_n n F_n = 2E = \sum_m m V_m$ . If  $V_3 = 0$ , deduce  $E \geq 2V$ , whilst if  $F_3 = 0$  deduce  $E \geq 2F$ . If the surface is a sphere, deduce that  $V_3 + F_3 > 0$ .

(b) For a polygonal decomposition of a sphere, further show that

$$\sum_{n} (6-n)F_n = 12 + 2\sum_{m} (m-3)V_m.$$

If each face has at least 3 edges and at least 3 edges meet at each vertex, deduce that  $3F_3 + 2F_4 + F_5 \ge 12$ .

(c) The surface of a football is decomposed into hexagons and pentagons, with precisely 3 faces meeting at each vertex. How many pentagons are there?

6. (a) Let  $S^2 \subset \mathbb{R}^3$  be the unit sphere. Let  $\pi_{\pm} : S^2 \setminus \{(0, 0, \pm 1)\} \to \mathbb{R}^2 = \{z = 0\}$  denote stereographic projection from the north / south poles  $(0, 0, \pm 1) \in S^2$ . Show that the transition function between these two charts is given by  $(u, v) \mapsto (u/(u^2 + v^2), v/(u^2 + v^2))$ . Deduce that this atlas gives  $S^2$  the structure of an abstract smooth surface.



(b) Now consider the chart on  $S^2$  given by  $(U, \phi)$  where  $U = \{y < 0\}$  and  $\phi : U \to \mathbb{R}^2$  maps  $(x, y, z) \to (x, z)$ . What is the image of  $\phi$ ? Check explicitly that this chart is *compatible* with the smooth atlas defined by  $\pi_{\pm}$ , i.e. the transition functions for the atlas with charts  $\{\pi_+, \pi_-, \phi\}$  are all smooth.

(c) Let  $a: S^2 \to S^2$  denote the antipodal map,  $x \mapsto -x$ . Show that a is a diffeomorphism of the abstract smooth surface  $S^2$ , and deduce that the real projective plane  $\mathbb{RP}^2$  also admits the structure of an abstract smooth surface.

7. A smooth curve in  $\mathbb{R}^3$  is a subset which can locally be given as the image of a smooth injective map  $(-1,1) \to \mathbb{R}^3$  with injective differential. Let  $H : \mathbb{R}^3 \to \mathbb{R}$  and  $K : \mathbb{R}^3 \to \mathbb{R}$  be smooth functions. Suppose the level sets  $H^{-1}(0)$  and  $K^{-1}(0)$  are smooth surfaces in  $\mathbb{R}^3$  which intersect along a smooth curve  $\gamma$  in  $\mathbb{R}^3$ . Suppose  $p = (x_0, y_0, z_0)$  belongs to  $\gamma$ , and that at p the expression  $K_y H_z - K_z H_y$  is non-vanishing. Show that in some neighbourhood of p the curve  $\gamma$  can be parametrized by the variable x, and that if we write  $\gamma(x) = (x, y(x), z(x))$  then

$$y'(x) = (K_z H_x - K_x H_z)/(K_y H_z - K_z H_y).$$

Verify this formula in the case  $H = x^2 + y^2 - z$  and  $K = x^2 + y^2 + z^2 - 1$ .

8. Consider the subset  $\Sigma \subset \mathbb{R}^3$  defined by  $\{(x, y, z) \in \mathbb{R}^3 : z = x^3 + y^3 - 3xy\}$ . Observe that  $\Sigma$  is a smooth surface in  $\mathbb{R}^3$  (*why?*). Show that the level set  $\Sigma \cap \{z = c\}$  is a (not necessarily connected) smooth curve in the plane unless  $c \in \{-1, 0\}$ . Sketch the level sets for values c = -1 and c = 0. [For c = -1, it may help to factorise  $x^3 + y^3 - 3xy + 1 = (x + y + 1)(x^2 + y^2 - xy - x - y + 1)$ .]

**9**. Let  $\Sigma_1, \Sigma_2 \subset \mathbb{R}^3$  be two smooth surfaces and let  $f : \Sigma_1 \to \Sigma_2$  be a smooth map between them. Given  $p \in \Sigma_1$  consider allowable parametrisations  $\sigma : U \to \Sigma_1, \tau : V \to \Sigma_2$  so that  $\sigma(0) = p$  and  $\tau(0) = f(p)$ . Define a linear map  $Df|_p : T_p\Sigma_1 \to T_{f(p)}\Sigma_2$  by

$$Df|_p := D\tau|_0 \circ D(\tau^{-1} \circ f \circ \sigma)|_0 \circ (D\sigma|_0)^{-1}.$$

Show that this definition is independent of the choices of allowable parametrisations. Show that if  $Df|_p$  is a linear isomorphism, then f is a local diffeomorphism at p.

10. Consider stereographic projection from the north pole  $\pi_+: S^2 \setminus \{(0,0,1)\} \to \mathbb{R}^2$  as in Question 6. Identify  $\mathbb{R}^2$  with  $\mathbb{C}$  and let  $P: \mathbb{C} \to \mathbb{C}$  be a non constant complex polynomial. Define  $F: S^2 \to S^2$  by

$$F(p) = \pi_{+}^{-1} \circ P \circ \pi_{+}(p), \text{ for } p \in S^{2} \setminus \{(0,0,1)\}, F(0,0,1) = (0,0,1).$$

Show that F is smooth. For  $P(\zeta) = \zeta^3 + \zeta^2 + 1$ , find the points  $p \in S^2$  for which  $DF|_p$  fails to be a linear isomorphism.