IB GEOMETRY EXAMPLES 1

G.P. Paternain Lent 2023

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Show that a topological surface is connected if and only if it is path-connected.
2. (a) Prove that the cone $\left\{x^{2}+y^{2}=z^{2}\right\} \subset \mathbb{R}^{3}$ is not a topological surface.
(b) Let X be the space obtained from the disjoint union $\mathbb{R}_{a}^{2} \sqcup \mathbb{R}_{b}^{2}$ of two copies of the plane \mathbb{R}^{2}, labelled by a and b, by identifying $(x, y) \in \mathbb{R}_{a}^{2}$ with $(x, y) \in \mathbb{R}_{b}^{2}$ whenever $(x, y) \neq(0,0)$. Show that X is a topological space in which every point has an open neighbourhood homeomorphic to \mathbb{R}^{2}, but which is not a topological surface.
(c) Let Σ be a topological surface, and let \mathbb{R}_{δ} denote the real numbers with the discrete topology. Show that $\Sigma \times \mathbb{R}_{\delta}$ is a topological space in which every point has an open neighbourhood homeomorphic to \mathbb{R}^{2}, but which is not a topological surface.
3. The torus T^{2} and Klein bottle K are the topological surfaces obtained as identification spaces of a quadrilateral, as indicated in the figure.
(a) Construct a continuous surjection $p: T^{2} \rightarrow T^{2}$ from the torus to itself such that for every $x \in T^{2}, p^{-1}(x)$ consists of exactly two points, and such that p is a 'local homeomorphism', so for every $p \in T^{2}$ there is an open neighbourhood $U \ni p$ for which $\left.p\right|_{U}: U \rightarrow p(U) \subset T^{2}$ is a homeomorphism to its image. [Such a map is called a covering map.]
(b) Show that T^{2} also admits a covering map $\hat{p}: T^{2} \rightarrow K$ to the Klein bottle (again with the properties that $\hat{p}^{-1}(x)$ consists of two points for each $x \in K$ and \hat{p} is a local homeomorphism).
(c) Give three pairwise non-conjugate subgroups $\mathbb{Z}_{2} \leq \operatorname{Homeo}\left(T^{2}\right)$ of the group, under composition of maps, of homeomorphisms from T^{2} to itself.

4. Draw inside the identification square for the Klein bottle K the set of points in which the 'usual' map $f: K \rightarrow \mathbb{R}^{3}$ (as drawn on the right above) fails to be injective. By considering a map $h=(f, \eta): K \rightarrow \mathbb{R}^{3} \times \mathbb{R}$, where η is a function of the width co-ordinate of the square, explain why K can be continuously embedded in \mathbb{R}^{4}, i.e. there is a continuous map $K \rightarrow \mathbb{R}^{4}$ which is a homeomorphism to its image. [You do not need an explicit formula for f. Many helpful pictures can be found at https://en.wikipedia.org/wiki/Klein_bottle.]
5. (a) Consider a decomposition of a topological surface into polygons (with V vertices, E edges and F faces), where all vertices have valence ≥ 3 and every face contains ≥ 3 vertices (and every edge is an edge of exactly two faces). Let F_{n} denote the number of faces bound by precisely n edges, and V_{m} the number of vertices where precisely m edges meet. Show that $\sum_{n} n F_{n}=2 E=\sum_{m} m V_{m}$. If $V_{3}=0$, deduce $E \geq 2 V$, whilst if $F_{3}=0$ deduce $E \geq 2 F$. If the surface is a sphere, deduce that $V_{3}+F_{3}>0$.
(b) For a polygonal decomposition of a sphere, further show that

$$
\sum_{n}(6-n) F_{n}=12+2 \sum_{m}(m-3) V_{m} .
$$

If each face has at least 3 edges and at least 3 edges meet at each vertex, deduce that $3 F_{3}+2 F_{4}+F_{5} \geq 12$.
(c) The surface of a football is decomposed into hexagons and pentagons, with precisely 3 faces meeting at each vertex. How many pentagons are there?
6. (a) Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere. Let $\pi_{ \pm}: S^{2} \backslash\{(0,0, \pm 1)\} \rightarrow \mathbb{R}^{2}=\{z=0\}$ denote stereographic projection from the north / south poles $(0,0, \pm 1) \in S^{2}$. Show that the transition function between these two charts is given by $(u, v) \mapsto\left(u /\left(u^{2}+v^{2}\right), v /\left(u^{2}+v^{2}\right)\right)$. Deduce that this atlas gives S^{2} the structure of an abstract smooth surface.

(b) Now consider the chart on S^{2} given by (U, ϕ) where $U=\{y<0\}$ and $\phi: U \rightarrow \mathbb{R}^{2}$ maps $(x, y, z) \rightarrow(x, z)$. What is the image of ϕ ? Check explicitly that this chart is compatible with the smooth atlas defined by $\pi_{ \pm}$, i.e. the transition functions for the atlas with charts $\left\{\pi_{+}, \pi_{-}, \phi\right\}$ are all smooth.
(c) Let $a: S^{2} \rightarrow S^{2}$ denote the antipodal map, $x \mapsto-x$. Show that a is a diffeomorphism of the abstract smooth surface S^{2}, and deduce that the real projective plane $\mathbb{R P}^{2}$ also admits the structure of an abstract smooth surface.
7. A smooth curve in \mathbb{R}^{3} is a subset which can locally be given as the image of a smooth injective map $(-1,1) \rightarrow \mathbb{R}^{3}$ with injective differential. Let $H: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $K: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be smooth functions. Suppose the level sets $H^{-1}(0)$ and $K^{-1}(0)$ are smooth surfaces in \mathbb{R}^{3} which intersect along a smooth curve γ in \mathbb{R}^{3}. Suppose $p=\left(x_{0}, y_{0}, z_{0}\right)$ belongs to γ, and that at p the expression $K_{y} H_{z}-K_{z} H_{y}$ is non-vanishing. Show that in some neighbourhood of p the curve γ can be parametrized by the variable x, and that if we write $\gamma(x)=(x, y(x), z(x))$ then

$$
y^{\prime}(x)=\left(K_{z} H_{x}-K_{x} H_{z}\right) /\left(K_{y} H_{z}-K_{z} H_{y}\right) .
$$

Verify this formula in the case $H=x^{2}+y^{2}-z$ and $K=x^{2}+y^{2}+z^{2}-1$.
8. Consider the subset $\Sigma \subset \mathbb{R}^{3}$ defined by $\left\{(x, y, z) \in \mathbb{R}^{3}: z=x^{3}+y^{3}-3 x y\right\}$. Observe that Σ is a smooth surface in \mathbb{R}^{3} (why?). Show that the level set $\Sigma \cap\{z=c\}$ is a (not necessarily connected) smooth curve in the plane unless $c \in\{-1,0\}$. Sketch the level sets for values $c=-1$ and $c=0$. [For $c=-1$, it may help to factorise $x^{3}+y^{3}-3 x y+1=(x+y+1)\left(x^{2}+y^{2}-x y-x-y+1\right)$.]
9. Let $\Sigma_{1}, \Sigma_{2} \subset \mathbb{R}^{3}$ be two smooth surfaces and let $f: \Sigma_{1} \rightarrow \Sigma_{2}$ be a smooth map between them. Given $p \in \Sigma_{1}$ consider allowable parametrisations $\sigma: U \rightarrow \Sigma_{1}, \tau: V \rightarrow \Sigma_{2}$ so that $\sigma(0)=p$ and $\tau(0)=f(p)$. Define a linear map $\left.D f\right|_{p}: T_{p} \Sigma_{1} \rightarrow T_{f(p)} \Sigma_{2}$ by

$$
\left.D f\right|_{p}:=\left.\left.D \tau\right|_{0} \circ D\left(\tau^{-1} \circ f \circ \sigma\right)\right|_{0} \circ\left(\left.D \sigma\right|_{0}\right)^{-1} .
$$

Show that this definition is independent of the choices of allowable parametrisations. Show that if $\left.D f\right|_{p}$ is a linear isomorphism, then f is a local diffeomorphism at p.
10. Consider stereographic projection from the north pole $\pi_{+}: S^{2} \backslash\{(0,0,1)\} \rightarrow \mathbb{R}^{2}$ as in Question 6. Identify \mathbb{R}^{2} with \mathbb{C} and let $P: \mathbb{C} \rightarrow \mathbb{C}$ be a non constant complex polynomial. Define $F: S^{2} \rightarrow S^{2}$ by

$$
F(p)=\pi_{+}^{-1} \circ P \circ \pi_{+}(p), \text { for } p \in S^{2} \backslash\{(0,0,1)\}, \quad F(0,0,1)=(0,0,1)
$$

Show that F is smooth. For $P(\zeta)=\zeta^{3}+\zeta^{2}+1$, find the points $p \in S^{2}$ for which $\left.D F\right|_{p}$ fails to be a linear isomorphism.

