
Geometry IB – 2020/21 – Sheet 3: Geodesics and abstract Riemannian metrics [circa Lectures 14–18]

1. Let Σ = {(x, y, z) |x2 + y2 = 1} be the unit cylinder. Show that a geodesic on Σ through the point (1, 0, 0) can be
parametrized to be contained in a spiral of the form γ(t) = (cosαt, sinαt, βt), where α2 + β2 = 1.

2. Let Σ ⊂ R3 be a smooth embedded surface in R3. Suppose that a straight line ` = R ⊂ R3 lies entirely in Σ. Prove
that ` is a geodesic on Σ. Deduce that through every point p of the hyperboloid S = {x2 + y2 = z2 + 1} there are
(at least) three geodesics γp : R→ S defined on the entire real line R.

Figure 1: Lines on the hyperboloid of one sheet

3. Let Σ ⊂ R3 be a smooth surface of revolution in R3. Suppose the smooth curve γ : (a, b)→ Σ satisfies the Clairaut
condition

ρ(t) cos θ(t) = constant

where ρ(t) is the distance from γ(t) to the axis of revolution, and θ(t) is the angle between γ and the parallel at
γ(t). Suppose furthermore that there is no positive-length interval on which γ co-incides with a parallel. Show that
γ is a geodesic. [This gives a partial converse to the Clairaut relation.]

4. (a) For a > 0, let Σ be the half-cone Σ = {(x, y, z) | z2 = a(x2 + y2), z > 0}. Show that Σ is locally isometric to the
Euclidean plane. By opening up the cone into a planar sector, or otherwise, show that when a = 3 no geodesic on
Σ intersects itself, but for a > 3 there are geodesics which self-intersect.

(b) Let γ be a geodesic on Σ which intersects the parallel z = 1 at an angle θ0. Using Clairaut’s relation, or
otherwise, show that the smallest value of z obtained on γ is independent of a. What happens when θ0 = π/2?

5. Given an example of a connected smooth surface Σ ⊂ R3 and points p, q ∈ Σ for which the infimum infγ L(γ) of
lengths of piecewise smooth curves γ : [a, b] → Σ with γ(a) = p and γ(b) = q is strictly smaller than the length of
any piecewise smooth curve γ between p and q.

6. Let η : [s0, s1] → R3 be an embedded smooth curve parametrized by arc-length. Assume that η′′(s) 6= 0 for every
s (i.e. η has non-zero curvature). The binormal vector to η is the unit vector b(s) in the direction η′(s) × η′′(s).
Consider the ruled surface with parametrization

σ(u, v) = η(u) + vb(u) u ∈ (s0, s1), −ε < v < ε, where ε > 0.

Prove that if ε is sufficiently small, then the image of σ defines a smooth surface in R3 on which η is a geodesic.

7. (a) The Möbius group PSL(2;C) acts on C∪{∞}. Let S2 ⊂ R3 denote the unit sphere, a smooth surface in R3. If we
identify C∪{∞} with S2 via stereographic projection, prove that the Möbius group acts on S2 by diffeomorphisms.

(b) Let f : S2 → S2 be a diffeomorphism which is also a global isometry. By using that f sends geodesics to
geodesics, or otherwise, show that f is the restriction to S2 of an element of the orthogonal group O(3).

(c) If the Möbius map A defines an isometry of S2, show that it commutes with the antipodal map −1 : S2 → S2

(which sends (x, y, z) 7→ (−x,−y,−z)). Is the converse true? Briefly justify your answer.



8. Show that the surfaces Σ and Σ′ in R3 defined as the images of

σ(u, v) = (u cos v, u sin v, lnu) and τ(u, v) = (u cos v, u sin v, v)

(where u > 0 and v > 0) have the same Gauss curvature, but are not locally isometric.

Figure 2: The surfaces Σ (left) and Σ′ (right): an ‘exponential cone’ and a helicoid

9. (a) Define an abstract Riemannian metric on the disc B(0, 1) ⊂ R2 by du2+dv2

1−u2−v2 . Prove directly that diameters are
then length-minimizing curves. Show that distances in the metric are bounded, but areas can be unbounded.

(b) Let V ⊂ R2 be the open square V = {|u| < 1, |v| < 1}. Define two abstract Riemannian metrics on V by

du2

(1− u2)2
+

dv2

(1− v2)2
and

du2

(1− v2)2
+

dv2

(1− u2)2
.

Prove that the resulting surfaces are not isometric, but there is an area-preserving diffeomorphism between them.
[Hint: for the first statement, consider the lengths of curves going out to the boundary in the two surfaces.]

10∗. Consider a smooth surface Σ ⊂ R3 with Gauss curvature κ, and an allowable parametrization σ : V → U ⊂ Σ with
first fundamental form du2 +G(u, v)dv2. Let e = σu, f = σv/

√
G and n = (σu × σv)/‖σu × σv‖, so 〈e, f, n〉 form a

‘moving frame’, i.e. an orthonormal basis of R3 depending on the point (u, v) ∈ V .

• Show n = e× f .

• Differentiating e.e = 1 = f.f and e.f = 0, show there are constants α, β, λi, µj for which

eu = α · f + λ1 · n; ev = β · f + µ1 · n; fu = −α · e+ λ2 · n; fv = −β · e+ µ2 · n.

• Show α = 0 and β =
√
Gu.

• Show λ1µ2 − λ2µ1 = eu · fv − fu · ev = −βu = −
√
Guu.

• Recalling that the Gauss map N satisfies DN(σu) = nu and DN(σv) = nv show nu × nv = κ · (σu × σv). By
considering (nu × nv).n, conclude that κ ·

√
G = −

√
Guu.

Deduce Gauss’ theorema egregium: if two smooth embedded surfaces in R3 are isometric, they have the same Gauss
curvature.

11∗. The first fundamental form makes sense for a surface Σ ⊂ Rn for any n. Let S1 ⊂ C be the unit circle. Let
S1 × S1 ⊂ C × C = R4 be the ‘product torus’. Show that the induced metric on S1 × S1 is locally Euclidean and
hence flat. Show that through any point p ∈ S1 × S1 there are infinitely many closed geodesics, and also infinitely
many non-closed geodesics (defined on the whole of R). [A closed geodesic is a geodesic σ defined on the whole of R
but which is periodic, so for some L > 0 we have σ(t+ L) = σ(t) for every t ∈ R.]
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