Geometry IB — 2020/21 — Sheet 3: Geodesics and abstract Riemannian metrics [circa Lectures 14—18]

1. Let ¥ = {(z,y,2) | 2% + y? = 1} be the unit cylinder. Show that a geodesic on X through the point (1,0, 0) can be
parametrized to be contained in a spiral of the form ~(¢) = (cos at, sin at, ft), where a? + 3% = 1.

2. Let ¥ C R3 be a smooth embedded surface in R3. Suppose that a straight line £ = R C R? lies entirely in 3. Prove
that ¢ is a geodesic on 3. Deduce that through every point p of the hyperboloid S = {22 + y? = 22 + 1} there are
(at least) three geodesics 7, : R — S defined on the entire real line R.

Figure 1: Lines on the hyperboloid of one sheet

3. Let ¥ C R? be a smooth surface of revolution in R3. Suppose the smooth curve v : (a,b) — ¥ satisfies the Clairaut
condition
p(t) cos O(t) = constant

where p(t) is the distance from ~(t) to the axis of revolution, and 0(t) is the angle between v and the parallel at
~(t). Suppose furthermore that there is no positive-length interval on which v co-incides with a parallel. Show that
7 is a geodesic. [This gives a partial converse to the Clairaut relation.

4. (a) For a > 0, let X be the half-cone ¥ = {(z,y,2) | 2?2 = a(2? + y?), z > 0}. Show that X is locally isometric to the
Fuclidean plane. By opening up the cone into a planar sector, or otherwise, show that when a = 3 no geodesic on
3 intersects itself, but for a > 3 there are geodesics which self-intersect.
(b) Let v be a geodesic on ¥ which intersects the parallel z = 1 at an angle fy. Using Clairaut’s relation, or
otherwise, show that the smallest value of z obtained on + is independent of a. What happens when 6y = 7/2?

5. Given an example of a connected smooth surface ¥ C R? and points p,q € ¥ for which the infimum inf, L(v) of
lengths of piecewise smooth curves v : [a,b] — ¥ with v(a) = p and y(b) = ¢ is strictly smaller than the length of
any piecewise smooth curve v between p and gq.

6. Let 7 : [s0,51] — R3 be an embedded smooth curve parametrized by arc-length. Assume that 1’ (s) # 0 for every
s (i.e. n has non-zero curvature). The binormal vector to 7 is the unit vector b(s) in the direction n'(s) x n(s).
Consider the ruled surface with parametrization

o(u,v) =n(u) + vb(u) u € (s0,81), —€ <wv <e¢, where € > 0.
Prove that if ¢ is sufficiently small, then the image of o defines a smooth surface in R? on which 7 is a geodesic.
7. (a) The Mébius group PSL(2; C) acts on CU{oo}. Let S? C R? denote the unit sphere, a smooth surface in R3. If we

identify C U {oo} with S? via stereographic projection, prove that the Mébius group acts on S? by diffeomorphisms.

(b) Let f : S — S? be a diffeomorphism which is also a global isometry. By using that f sends geodesics to
geodesics, or otherwise, show that f is the restriction to S? of an element of the orthogonal group O(3).

(c) If the Mobius map A defines an isometry of S2, show that it commutes with the antipodal map —1 : §% — S2
(which sends (z,y,z) — (—x, —y, —z)). Is the converse true? Briefly justify your answer.



8.

9. (a) Define an abstract Riemannian metric on the disc B(0,1) C R? by

10*.

11*.

Show that the surfaces ¥ and ¥’ in R? defined as the images of
o(u,v) = (ucosv,usinv,lnu) and 7(u,v) = (ucosv,usinv,v)

(where © > 0 and v > 0) have the same Gauss curvature, but are not locally isometric.

Figure 2: The surfaces ¥ (left) and ¥’ (right): an ‘exponential cone’ and a helicoid
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%. Prove directly that diameters are

then length-minimizing curves. Show that distances in the metric are bounded, but areas can be unbounded.
(b) Let V' C R? be the open square V = {|u| < 1, |[v| < 1}. Define two abstract Riemannian metrics on V by

du? dv? du? dv?

A—we a-wp "™ ooy aoap

Prove that the resulting surfaces are not isometric, but there is an area-preserving diffeomorphism between them.
[Hint: for the first statement, consider the lengths of curves going out to the boundary in the two surfaces.]

Consider a smooth surface ¥ ¢ R? with Gauss curvature x, and an allowable parametrization o : V — U C ¥ with
first fundamental form du? 4+ G(u,v)dv?. Let e = o, f = 0,,/vV/G and n = (0, x 0,)/||ow X 04|, s0 (e, f,n) form a
‘moving frame’, i.e. an orthonormal basis of R* depending on the point (u,v) € V.

e Show n=e x f.

o Differentiating e.e =1 = f.f and e.f = 0, show there are constants c, 8, A;, it; for which
ey=a-f+A-n; e =0-f+pu-n fu=—-a-et+tdn fo=—-F-e+pu-n.

Show a = 0 and 8 = VG,,.
Show Ajpie — Aoptr =€y - fo — fu-€p = —fu = _\/auux

Recalling that the Gauss map N satisfies DN (o) = n, and DN(o,) = n, show n, X n, = £ - (oy X 0,). By
considering (n, X n,).n, conclude that & - VG = =G,

Deduce Gauss’ theorema egregium: if two smooth embedded surfaces in R? are isometric, they have the same Gauss
curvature.

The first fundamental form makes sense for a surface ¥ C R"™ for any n. Let S' C C be the unit circle. Let
Sl x 81 ¢ C x C =R* be the ‘product torus’. Show that the induced metric on S' x S! is locally Euclidean and
hence flat. Show that through any point p € S! x S! there are infinitely many closed geodesics, and also infinitely
many non-closed geodesics (defined on the whole of R). [A closed geodesic is a geodesic o defined on the whole of R
but which is periodic, so for some L > 0 we have o(t + L) = o(t) for every ¢t € R.]
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