Geometry IB - 2019/20 - Sheet 4: Hyperbolic surfaces and Gauss-Bonnet

1. Show that a non-identity Möbius transformation T has exactly one or two fixed points in $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. Show that if T corresponds, under stereographic projection, to a rotation of S^{2}, then it has two fixed points z_{i} which satisfy $z_{2}=-1 / \bar{z}_{1}$. If $T \in$ Möb has two fixed points z_{i} and $z_{2}=-1 / \bar{z}_{1}$, prove that either T corresponds to a rotation, or one of the two fixed points (say z_{1}) is attractive, i.e. $T^{n}(z) \rightarrow z_{1}$ for all $z \neq z_{2}$ as $n \rightarrow \infty$.
2. (a) Let A, B be disjoint circles in \mathbb{C}. Show that there is a Möbius transformation which takes A and B to two concentric circles.
(b) A collection of circles $X_{i} \subset \mathbb{C}, 0 \leq i \leq n-1$, for which: (i) X_{i} is tangent to A, B and X_{i+1} (with indices $\bmod n$); and (ii) the circles are disjoint away from tangency points, is called a constellation on (A, B). Prove that for any $n \geq 2$ there is some pair (A, B) and a constellation on (A, B) made of precisely n circles. Draw a picture illustrating your answer.
(c) Given an n-circle constellation $\left\{X_{i}\right\}$ on (A, B), prove that the tangency points $X_{i} \cap X_{i+1}$ for $0 \leq i \leq n-1$ all lie on a circle. Moreover, prove that if Y_{0} is any circle tangent to A and B, and Y_{i} are constructed inductively, for $i \geq 1$, so that Y_{i} is tangent to A, B and Y_{i-1}, then necessarily $Y_{n}=Y_{0}$, so the chain of circles closes up to form another constellation.

Figure 1: A constellation on the red and blue circles
3. Show from first principles that a vertical line segment defines a geodesic in the hyperbolic upper half-plane, i.e. the upper half-plane with the abstract metric $\frac{d x^{2}+d y^{2}}{y^{2}}$.
4. Let z_{1}, z_{2} be distinct points in the upper half plane \mathfrak{h}. Suppose that the hyperbolic line through z_{1} and z_{2} meets the real axis at points w_{1} and w_{2}, where z_{1} lies on the hyperbolic line segment $w_{1} z_{2}$ (and where one w_{i} may be $\infty)$. Show that the hyperbolic distance $d_{\text {hyp }}\left(z_{1}, z_{2}\right)=\log r$, where r is the cross-ratio of the four points $z_{1}, z_{2}, w_{1}, w_{2}$ taken in an appropriate order.
5. (a) Let $P \in S^{2} \subset \mathbb{R}^{3}$ be a point on the round sphere. The spherical circle with centre P and radius ρ is the set $\left\{w \in S^{2} \mid d_{s p h}(w, P)=\rho\right\}$, where $d_{s p h}$ is the spherical metric (induced by the first fundamental form of the embedding). Prove that a spherical circle of radius ρ is a Euclidean circle. Prove that its circumference is $2 \pi \sin (\rho)$ and that it bounds a disc on S^{2} of area $2 \pi(1-\cos (\rho))$.
(b) Let $C \subset \mathfrak{h}$ be a hyperbolic circle with centre $p \in \mathfrak{h}$ and radius ρ, i.e. the locus $\left\{w \in \mathfrak{h} \mid d_{\text {hyp }}(w, p)=\rho\right\}$ for some $\rho>0$. Show that C is a Euclidean circle. If $p=i c$ for $c \in \mathbb{R}_{>0}$, find the centre and radius of C as a Euclidean circle. Show the hyperbolic circumference of C is $2 \pi \sinh (\rho)$, and the hyperbolic area of the disc it bounds is $2 \pi(\cosh (\rho)-1)$. Deduce that no hyperbolic triangle contains a hyperbolic circle of radius $>\cosh ^{-1}(3 / 2)$.
(c) Deduce that there is some $\delta>0$ such that, in any hyperbolic triangle, the union of the δ-neighbourhoods of two of the sides completely contains the 3rd side. (Does such a δ exist for triangles in the Euclidean plane?)
6. Fix a hyperbolic triangle $\Delta \subset \mathbb{H}^{2}$ with interior angles A, B, C and side lengths (in the hyperbolic metric) a, b, c, where a is the side opposite the vertex with angle A, etc.
(a) Suppose that C is a right-angle. By applying the 'hyperbolic cosine' formula in two different ways, prove that

$$
\sin (A) \sinh (c)=\sinh (a)
$$

(b) Deduce that for a general hyperbolic triangle, one has

$$
\frac{\sin (A)}{\sinh (a)}=\frac{\sin (B)}{\sinh (b)}=\frac{\sin (C)}{\sinh (c)}
$$

7. (a) Let $l \subset \mathfrak{h}$ be the hyperbolic line in the hyperbolic upper half-plane given by the Euclidean semi-circle with centre $a \in \mathbb{R}$ and radius $r>0$. Prove that the hyperbolic reflection (or inversion) in l is given by $r_{l}(z)=a+r^{2} /(\bar{z}-a)$.
(b) Show that two hyperbolic lines have a common perpendicular if and only if they are ultraparallel, and that in this case the common perpendicular is unique. Show that, up to isometry, for $t>0$ there is a unique configuration of ultraparallel lines for which the segment of the common perpendicular between the lines has length t.
(c) Let l_{1}, l_{2} be ultraparallel hyperbolic lines, and let $r_{l_{i}}$ denote the hyperbolic isometry given by reflection in l_{i}. Prove that $r_{l_{1}} \circ r_{l_{2}}$ has infinite order.
(d)* Let l_{1}, l_{2}, l_{3} be pairwise ultraparallel hyperbolic lines whose endpoints are cyclically ordered $l_{1}^{+}, l_{1}^{-}, l_{2}^{+}, l_{2}^{-}, l_{3}^{+}, l_{3}^{-}$ at infinity $\partial \mathbb{H}^{2}$. Let $T_{a}=r_{l_{2}} \circ r_{l_{1}}$ and $T_{b}=r_{l_{3}} \circ r_{l_{2}}$. Prove that T_{a} and T_{b} generate a free subgroup of the group of orientation-preserving isometries of the hyperbolic plane. [Hint: if U is the region bound by the l_{i}, and $V=U \cup r_{l_{2}} U$, consider a 'tiling' of the plane by copies of V.]
8. (a) Consider the 'ideal' hyperbolic square with vertices at $0,1, \infty,-1$ in the upper half-plane model. By gluing the edges of the square by isometries, or otherwise, prove that there is a complete hyperbolic metric on the smooth surface $S^{2} \backslash\{p, q, r\}$ given by the complement of 3 distinct points in the sphere.
(b) Construct a non-orientable compact hyperbolic surface.
9. Let $S \subset \mathbb{R}^{3}$ be a smooth surface and $\gamma:(a, b) \rightarrow S$ a smooth curve lying on S and parametrized by arc length. The geodesic curvature $\kappa_{\text {geo }}$ of γ at t is the length of the orthogonal projection of $\gamma^{\prime \prime}(t)$ to the tangent plane $T_{\gamma(t)} S$, more precisely $\kappa_{\text {geo }}(t)=\left\langle\gamma^{\prime \prime}(t), n \times \gamma^{\prime}(t)\right\rangle$ where n is the unit normal to S at $\gamma(t)$.
(a) Show that γ is a geodesic if and only if $\kappa_{\text {geo }}$ vanishes identically.
(b) Let S be a surface of revolution and $R \subset S$ the region bound by two parallels of latitude. Let Γ denote the (oriented) boundary of R. Compute $\int_{\Gamma} \kappa_{\text {geo }} d t$ and $\int_{R} \kappa d A$, where κ is the Gauss curvature of S.

Figure 2: Oriented boundary of a region between parallels
10. Let Σ be an abstract compact hyperbolic surface. Let γ_{1} and γ_{2} be simple closed geodesics on Σ, i.e. the images of smooth embeddings $\gamma_{i}: S^{1} \rightarrow \Sigma$ which everywhere satisfy the geodesic equations. Prove that $\gamma_{1} \sqcup \gamma_{2}$ cannot be the boundary of an embedded cylinder in Σ (i.e. a smooth subsurface homeomorphic to $S^{1} \times[0,1]$.
Construct a compact abstract hyperbolic surface Σ, and disjoint simple closed geodesics $\gamma_{i} \subset \Sigma$, for which $\gamma_{1} \sqcup \gamma_{2}$ bounds an embedded subsurface Σ^{\prime} of Σ homeomorphic to the complement of two disjoint discs in a torus. Can this happen if Σ has genus two? Briefly justify your answer.

Ivan Smith is200@cam.ac.uk

