Geometry IB - 2019/20 - Sheet 3: Geodesics and abstract Riemannian metrics

1. Let $\Sigma=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$ be the unit cylinder. Show that a geodesic on Σ through the point $(1,0,0)$ can be parametrized to be contained in a spiral of the form $\gamma(t)=(\cos \alpha t, \sin \alpha t, \beta t)$, where $\alpha^{2}+\beta^{2}=1$.
2. Let $\Sigma \subset \mathbb{R}^{3}$ be a smooth embedded surface in \mathbb{R}^{3}. Suppose that a straight line $\ell=\mathbb{R} \subset \mathbb{R}^{3}$ lies entirely in Σ. Prove that ℓ is a geodesic on Σ. Hence show that through every point p of the hyperboloid $S=\left\{x^{2}+y^{2}=z^{2}+1\right\}$ there is a geodesic $\gamma_{p}: \mathbb{R} \rightarrow S$ parametrized by arc-length and which is defined on the entire real line \mathbb{R}.

Figure 1: Lines on the hyperboloid of one sheet
3. Given an example of a connected smooth surface $\Sigma \subset \mathbb{R}^{3}$ and points $p, q \in \Sigma$ for which the infimum $\inf _{\gamma} L(\gamma)$ of lengths of piecewise smooth curves $\gamma:[a, b] \rightarrow \Sigma$ with $\gamma(a)=p$ and $\gamma(b)=q$ is strictly smaller than the length of any piecewise smooth curve γ between p and q.
4. (a) For $a>0$, let Σ be the half-cone $\Sigma=\left\{(x, y, z) \mid z^{2}=a\left(x^{2}+y^{2}\right), z>0\right\}$. Show that Σ is locally isometric to the Euclidean plane. By opening up the cone into a planar sector, or otherwise, show that when $a=3$ no geodesic on Σ intersects itself, but for $a>3$ there are geodesics which self-intersect.
(b) Let γ be a geodesic on Σ which intersects the parallel $z=1$ at an angle θ_{0}. Using Clairaut's relation, or otherwise, show that the smallest value of z obtained on γ is independent of a. What happens when $\theta_{0}=\pi / 2$?
5. A surface of Liouville is a smooth surface $\Sigma \subset \mathbb{R}^{3}$ which admits an allowable parametrization $\sigma(u, v)$ in which the first fundamental form has the shape

$$
E d u^{2}+2 F d u d v+G d v^{2} \quad \text { where } \quad E=G=U(u)+V(v), F=0
$$

(so U respectively V are functions only of u respectively v). Show that the geodesics on such a surface can be written in the form

$$
\int \frac{d u}{\sqrt{U-c}}= \pm \int \frac{d v}{\sqrt{V+c}}+c^{\prime}
$$

for constants c, c^{\prime} depending on the initial conditions (i.e. a point and tangent direction of the geodesic).
If a geodesic γ makes an angle θ with a curve $v=$ constant, show that $U \sin ^{2} \theta-V \cos ^{2} \theta$ is constant along γ.
6. Let $\eta:\left[s_{0}, s_{1}\right] \rightarrow \mathbb{R}^{3}$ be an embedded smooth curve parametrized by arc-length. Assume that η has non-zero curvature, so $\left\|\eta^{\prime \prime}(s)\right\| \neq 0$ for every s. The binormal vector to η is the unit vector $b(s)$ in the direction $\eta^{\prime}(s) \times \eta^{\prime \prime}(s)$. Consider the ruled surface with parametrization

$$
\sigma(u, v)=\eta(u)+v b(u) \quad u \in\left(s_{0}, s_{1}\right),-\varepsilon<v<\varepsilon, \text { where } \varepsilon>0
$$

Prove that if ε is sufficiently small, then the image of σ defines a smooth surface in \mathbb{R}^{3} on which η is a geodesic.
7. Define an abstract Riemannian metric on the disc $B(0,1) \subset \mathbb{R}^{2}$ by $\frac{d u^{2}+d v^{2}}{1-u^{2}-v^{2}}$. Prove directly that diameters are then length-minimizing curves. Show that distances in the metric are bounded, but areas can be unbounded.
8. (a) Let $V \subset \mathbb{R}^{2}$ be the open square $V=\{|u|<1,|v|<1\}$. Define two abstract Riemannian metrics on V by

$$
\frac{d u^{2}}{\left(1-u^{2}\right)^{2}}+\frac{d v^{2}}{\left(1-v^{2}\right)^{2}} \quad \text { and } \quad \frac{d u^{2}}{\left(1-v^{2}\right)^{2}}+\frac{d v^{2}}{\left(1-u^{2}\right)^{2}}
$$

Prove that the resulting surfaces are not isometric, but there is an area-preserving diffeomorphism between them. [Hint: for the first statement, consider the lengths of curves going out to the boundary in the two surfaces.]
(b) Show that the surfaces Σ and Σ^{\prime} in \mathbb{R}^{3} defined as the images of

$$
\sigma(u, v)=(u \cos v, u \sin v, \ln u) \quad \text { and } \quad \tau(u, v)=(u \cos v, u \sin v, v)
$$

(where $u>0$ and $v>0$) have the same Gauss curvature, but are not locally isometric.

Figure 2: The surfaces Σ (left) and Σ^{\prime} (right): an 'exponential cone' and a helicoid
9. (a) The Möbius group $\mathbb{P} S L(2 ; \mathbb{C})$ acts on $S^{2}=\mathbb{C} \cup\{\infty\}$. Prove that this is an action by smooth diffeomorphisms, if we identify $\mathbb{C} \cup\{\infty\}$ with the round unit sphere $S^{2} \subset \mathbb{R}^{3}$ via stereographic projection.
(b) Let $f: S^{2} \rightarrow S^{2}$ be a global isometry of the unit sphere. By using that f sends geodesics to geodesics, or otherwise, show that f is the restriction to S^{2} of an element of the orthogonal group $O(3)$.
(c) If the Möbius map A defines an isometry of S^{2}, show that it commutes with the antipodal map $-1: S^{2} \rightarrow S^{2}$ (which sends $(x, y, z) \mapsto(-x,-y,-z))$. Is the converse true? Briefly justify your answer.
10. The first fundamental form makes sense for a surface $\Sigma \subset \mathbb{R}^{n}$ for any n. Let $S^{1} \subset \mathbb{C}$ be the unit circle. Let $S^{1} \times S^{1} \subset \mathbb{C} \times \mathbb{C}=\mathbb{R}^{4}$ be the 'product torus'. Show that the induced metric on $S^{1} \times S^{1}$ is locally Euclidean and hence flat. Show that through any point $p \in S^{1} \times S^{1}$ there are infinitely many closed geodesics, and also infinitely many non-closed geodesics.

Ivan Smith is200@cam.ac.uk

