1. Show that a differentiable curve $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ with $\gamma^{\prime}(t) \neq 0$ for every t can be parametrized by arc-length.
2. Mercator's projection of the sphere is the chart whose inverse is the local parametrization

$$
\sigma(u, v)=(\operatorname{sech} u \cos v, \operatorname{sech} u \sin v, \tanh u)
$$

Prove that this determines a chart on the complement of a longitude, which sends lines of longitude and latitude to straight lines in the plane, and which preserves angles but not areas (cf. Greenland versus Africa on a map; see also https://en.wikipedia.org/wiki/Mercator_projection).
3. The helicoid is the ruled surface swept by a straight line which moves perpendicular to the z-axis and at time t passes through $(0,0, t)$ and makes an angle t with the x-axis (consider the surface swept by the rotor blade of a helicopter rising vertically). Parametrize the helicoid and find its first fundamental form.

Figure 1: The helicoid
4. (a) Let $\eta:(a, b) \rightarrow \mathbb{R}^{3}$ be a smooth curve given by $\eta(u)=(f(u), 0, g(u))$. Suppose η^{\prime} is never zero, η is a homeomorphism to its image and $f(u)>0$ for all u. Let Σ denote the associated surface of revolution given by rotating η around the z-axis. Prove that the Gauss curvature κ of Σ is given by

$$
\kappa=\frac{\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right) g^{\prime}}{\left(\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{2} f}
$$

If η is parametrized by arc-length, show $\kappa=-f^{\prime \prime} / f$. Verify from this viewpoint that the unit sphere has constant Gauss curvature +1 . What about the round sphere $S^{2} \subset \mathbb{R}^{3}$ of radius R ?
(b) Calculate the Gauss curvature κ of the hyperboloid of one sheet $\left\{x^{2}+y^{2}=z^{2}+1\right\}$ and of two sheets $\left\{x^{2}+y^{2}=\right.$ $\left.z^{2}-1\right\}$. In both cases, describe the qualitative properties of κ (its sign, its behaviour near infinity). Illustrate the results with a picture.
5. Place the unit sphere $S^{2} \subset \mathbb{R}^{3}$ inside a vertical circular cylinder C of radius one. Prove that horizontal projection from S^{2} to C preserves area. Deduce that S^{2} admits a smooth atlas of charts which are area-preserving.
6. A lune is the region on the unit sphere S^{2} cut out by two great circles. Prove that if these circles meet at angle α, the lune has area 2α. Hence, or otherwise, prove that a spherical triangle, i.e. a connected region bound by 3 great circles and with internal angles α, β, γ each less than π, has area $\alpha+\beta+\gamma-\pi$.
7. Let $T \subset \mathbb{R}^{3}$ be the smooth embedded torus obtained by rotating the circle $(x-2)^{2}+z^{2}=1$ in the $x z$-plane around the z axis. Calculate the surface area of T.
Compute the Gauss curvature κ of T. Draw an illustration of the places on T where κ is positive, negative and zero respectively, and verify that $\int_{T} \kappa d A=0$ (where $d A$ is the area element associated to the metric on $T \subset \mathbb{R}^{3}$).
8. The tractrix is the path followed by a heavy object which starts at $(1,0)$ in \mathbb{R}^{2} and is pulled by a person attached to the object by a (taut) rope of length 1 and who walks from the origin up the y-axis. The tractoid is the surface obtained by rotating the tractrix around the y-axis. Show that the tractrix can be described parametrically as

$$
x=\sin t, y=(\cos t+\ln \tan (t / 2)), \quad t \in(\pi / 2, \pi)
$$

Prove that the tractoid is a smooth surface where $y>0$, has Gauss curvature identically -1 , and has total area 2π.

Figure 2: The tractoid
9. Let $\Sigma \subset \mathbb{R}^{3}$ be a smooth embedded oriented surface, and $p \in \Sigma$. Let $n(p)$ be the unit normal vector at p. Let $v \in T_{p} \Sigma$ be a unit vector (with respect to the first fundamental form). Let γ_{v} be the plane curve which is the intersection of Σ and the two-plane $\mathbb{R}^{2}=\langle n(p), v\rangle$. Viewing the second fundamental form as a bilinear form $I I_{p}$ on $T_{p} \Sigma$, show that $I I_{p}(v, v)$ is the curvature of the plane curve γ_{v} at p.
[The curvature of a plane curve $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$ parametrized by arc-length is the function $\kappa:(a, b) \rightarrow \mathbb{R}$ for which $\gamma^{\prime \prime}(s)=\kappa(s) n_{\gamma}(s)$, with $n_{\gamma}(s)$ the unit normal to γ for which $\left\langle\gamma^{\prime}(s), n_{\gamma}(s)\right\rangle$ forms a positively oriented basis for $\left.\mathbb{R}^{2}.\right]$

Ivan Smith
is200@cam.ac.uk

