Geometry IB - 2019/20 - Sheet 1: Topological and smooth surfaces

1. (a) Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere. Let $\pi_{+}: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}=\{z=0\}$ denote stereographic projection from the north pole $N=(0,0,1) \in S^{2}$, and π_{-}stereographic projection from the south pole $(0,0,-1)$. Show that the transition function between these two charts is given by $(u, v) \mapsto\left(u /\left(u^{2}+v^{2}\right), v /\left(u^{2}+v^{2}\right)\right)$. Deduce that S^{2} is a smooth surface.
(b) Now consider the chart on S^{2} given by (U, ϕ) where $U=\{y<0\}$ and $\phi: U \rightarrow \mathbb{R}^{2}$ maps $(x, y, z) \rightarrow(x, z)$. What is the image of ϕ ? Check explicitly that this chart is compatible with the smooth atlas defined by $\pi_{ \pm}$, i.e. the transition functions for the atlas with charts $\left\{\pi_{+}, \pi_{-}, \phi\right\}$ are all smooth.

2. Show that an open subset of \mathbb{R}^{2} is path-connected if and only if it is connected. Deduce that a topological surface is connected if and only if it is path-connected.
3. (a) Prove that the cone $\left\{x^{2}+y^{2}=z^{2}\right\} \subset \mathbb{R}^{3}$ is not a topological surface.
(b) Let X be the space obtained from the disjoint union $\mathbb{R}_{a}^{2} \sqcup \mathbb{R}_{b}^{2}$ of two copies of the plane \mathbb{R}^{2}, labelled by a and b, by identifying $(x, y) \in \mathbb{R}_{a}^{2}$ with $(x, y) \in \mathbb{R}_{b}^{2}$ whenever $(x, y) \neq(0,0)$. Show that X is locally homeomorphic to \mathbb{R}^{2}, but is not a topological surface.
4. Define the torus T^{2} as the quotient space of a square by the side identifications as shown on the left below. Prove that T^{2} is homeomorphic to the quotient space $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Hence, or otherwise, show that the torus T^{2} is homeomorphic to the surface of revolution defined by rotating the circle $\left\{(x-b)^{2}+z^{2}=a^{2}\right\}$ about the z-axis, where $0<a<b$.

5. (a) The Klein bottle K is the quotient space of the square by the side identifications indicated above. By constructing a suitable atlas of charts, prove carefully that K is a smooth surface.
(b) Construct a continuous surjection $p: T^{2} \rightarrow K$ such that for every $x \in K, p^{-1}(x)$ consists of exactly two points.
(c) Draw inside the identification square for the Klein bottle K the set of points in which the 'usual' map $f: K \rightarrow \mathbb{R}^{3}$ (as drawn on the right above) fails to be injective. By considering a map $h=(f, \eta): K \rightarrow \mathbb{R}^{3} \times \mathbb{R}$, where η is a function of the width co-ordinate of the square, explain why K can be continuously embedded in \mathbb{R}^{4} (i.e. there is a continuous map $K \rightarrow \mathbb{R}^{4}$ which is a homeomorphism to its image). [You do not need an explicit formula for f. Many helpful pictures can be found at https://en.wikipedia.org/wiki/Klein_bottle.]
6. State the implicit function theorem. For $k \in\{1,2\}$, if $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{k}$ satisfies that $\left.D F\right|_{p}$ is onto for some $p \in \mathbb{R}^{3}$, show that there are (smooth, invertible) local co-ordinate changes defined near p and $F(p)=q$ after which F locally agrees with one of the projection maps $(x, y, z) \mapsto x$ or $(x, y, z) \mapsto(x, y)$.
Deduce that, for fixed q, the set of solutions $Z_{q}=\left\{u \in \mathbb{R}^{3} \mid F(u)=q\right\}$ is locally a smooth curve ($k=2$) or surface $(k=1)$ near p.
7. Consider the subspace $\Sigma \subset \mathbb{R}^{3}$ defined by $\left\{(x, y, z) \in \mathbb{R}^{3}: z=x^{3}+y^{3}-3 x y\right\}$.
(a) Prove that Σ is a smooth surface.
(b) Show that the level set $\Sigma \cap\{z=c\}$ is a smooth curve in the plane unless $c \in\{-1,0\}$. Sketch the level sets for values $c=-1$ and $c=0$. [For $c=-1$, it may help to factorise $x^{3}+y^{3}-3 x y+1=(x+y+1)\left(x^{2}+y^{2}-x y-x-y+1\right)$.]
8. (a) Let X be the set of unordered pairs of points on a circle S^{1}. Explain why X is naturally a quotient space of the torus T^{2}. By considering T^{2} as a quotient space of a square, as in question 4, or otherwise, show that X is homeomorphic to $\mathbb{R}^{2} \backslash \grave{D}$, the complement of an open disc $D \subset \mathbb{R} \mathbb{P}^{2}$ in $\mathbb{R}^{2} \mathbb{P}^{2}$.
(b) Let $\phi: D=\{|z| \leq 1\} \rightarrow \mathbb{R}^{2}$ be a continuous injection of a closed disc D, with boundary $C=\phi\left(S^{1}\right) \subset \mathbb{R}^{2}$. Define a map $f: C \times C \rightarrow \mathbb{R}^{3}$ via

$$
(u, v) \mapsto\left(\frac{u+v}{2},|u-v|\right) \in \mathbb{R}^{2} \times \mathbb{R}
$$

Show that f defines a map on X, which extends to a continuous map $\hat{\phi}: \mathbb{R P}^{2} \rightarrow \mathbb{R}^{3}$.
(c) Using without proof that a compact non-orientable topological surface cannot be continuously embedded in \mathbb{R}^{3}, deduce that C bounds an inscribed rectangle, i.e. there are four pairwise-distinct points on the curve which form the vertices of a rectangle in \mathbb{R}^{2} (the rectangle need not be wholly contained in $\phi(D)$, cf. figure below). [It is an open problem to show that every simple closed curve $C \subset \mathbb{R}^{2}$ bounds an inscribed square.]

9. Consider a decomposition of a topological surface into polygons (with V vertices, E edges and F faces), where all vertices have valence ≥ 3. Let F_{n} denote the number of faces bound by precisely n edges, and V_{m} the number of vertices where precisely m edges meet. Show that $\sum_{n} n F_{n}=2 E=\sum_{m} m V_{m}$. If $V_{3}=0$, deduce $E \geq 2 V$, whilst if $F_{3}=0$ deduce $E \geq 2 F$. If the surface is a sphere, deduce that $V_{3}+F_{3}>0$.
10. (a) Viewing a polygonal decomposition of a topological surface S as a map drawn on S, we say that the map can be coloured with N colours if we can colour faces so that faces which share an edge have different colours (but faces which meet only at a vertex may have the same colour). Suppose that $N \in \mathbb{N}$ is a positive integer such that $2 E / F<N$ for every possible decomposition of S. Show that every map on S can be coloured with at most N colours. [Hint: Induct on F, noting that the result is straightforward if $F<N$.]
(b) Prove that for any decomposition of S (where all vertices have valence at least 3), we have $2 E / F \leq 6(1-\chi(S) / F)$, where $\chi(S)$ is the Euler characteristic of S. Deduce that any map on a torus can be coloured with 7 colours. The map on the torus depicted below can be coloured with 7 colours but not fewer - why?

Ivan Smith is200@cam.ac.uk

