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1. Let U ⊆ R
2 be an open (path) connected set equipped with a Riemannian metric

R = E(du)2 + 2Fdu dv +G(dv)2.

Define the distance dR(P,Q) between two points P,Q ∈ U to be the infimum of the lengths
of piecewise smooth curves joining them. Prove that this is a pseudometric on U ; namely
show that dR satisfies all the axioms for a metric space other than dR(P,Q) = 0 implies
P = Q. Whilst this last point was shown to be true in lectures, give an example to illustrate
that this proof is not as easy as might first be assumed.

2. We define a Riemannian metric on the unit disc D ⊂ C by (du2 + dv2)/(1− (u2 + v2)).
Prove that the diameters (monotonically parametrized) are length minimizing curves for
this metric. Defining the distance between two points of D as in Question 1, show that
the distances in this metric are bounded, but that the areas are unbounded.

3. We let V ⊂ R
2 denote the square given by |u| < 1 and |v| < 1, and define two

Riemannian metrics on V given by

du2/(1− u2)2 + dv2/(1− v2)2, and du2/(1− v2)2 + dv2/(1− u2)2.

Prove that there is no (Riemannian) isometry between the two spaces, but that an area-
preserving diffeomorphism does exist.
[Hint: to prove that an isometry does not exist, show that in one space there are curves of
finite length going out to the boundary, whilst in the other space no such curves exist.]

4. Let l denote the hyperbolic line in H given by a semicircle with centre a ∈ R and radius
r > 0. Show that the reflection Rl is given by the formula

Rl(z) = a+
r2

z̄ − a
.

5. If a is a point of the upper half-plane, show that the Möbius transformation g given by

g(z) =
z − a

z − ā

defines a (Riemannian) isometry from the upper half-plane model H to the disc model
D of the hyperbolic plane, sending a to zero. Deduce that for points z1, z2 in the upper
half-plane, the hyperbolic distance is given by ρ(z1, z2) = 2 tanh−1

∣

∣(z1 − z2)/(z1 − z2)
∣

∣.

6. Suppose that z1, z2 are points in the upper half-plane, and suppose the hyperbolic line
through z1 and z2 meets the real axis at points z∗1 and z∗2 , where z1 lies on the hyperbolic
line segment z∗1z2, and where one of z∗1 and z∗2 might be ∞. Show that the hyperbolic
distance ρ(z1, z2) = log r, where r is the cross-ratio of the four points z∗1 , z1, z2, z

∗

2 , taken in
an appropriate order.

7. Let C denote a hyperbolic circle of hyperbolic radius ρ in the upper half-plane model of
the hyperbolic plane; show that C is also a Euclidean circle. If C has hyperbolic centre ic,
find the radius and centre of C regarded as a Euclidean circle. Show that a hyperbolic



circle of hyperbolic radius ρ has hyperbolic area A and hyperbolic circumference C given
by

A = 2π(cosh(ρ)− 1), C = 2π sinh(ρ).

Describe how area and circumference behave for ρ large in the hyperbolic case and compare
their behaviour with the the corresponding functions in Euclidean geometry. On the other
hand, how does hyperbolic area behave as a function of hyperbolic circumference?

8. Given two points P and Q in the hyperbolic plane, show that the locus of points
equidistant from P and Q is a hyperbolic line, the perpendicular bisector of the hyperbolic
line segment from P to Q.

9. Show that any isometry g of the disc model D for the hyperbolic plane is either of the
form (for some a ∈ D and 0 ≤ θ < 2π):

g(z) = eiθ
z − a

1− āz
,

or of the form

g(z) = eiθ
z̄ − a

1− āz̄
.

10. Prove that a convex hyperbolic n-gon with interior angles α1, . . . , αn has area

(n− 2)π −
∑

αi.

Show that for every n ≥ 3 and every α with 0 < α < (1− 2

n
)π, there is a regular n-gon all

of whose angles are α.

11. Show that two hyperbolic lines have a common perpendicular if and only if they are
ultraparallel, and that in this case the perpendicular is unique. Given two ultraparallel
hyperbolic lines, prove that the composite of the corresponding reflections has infinite
order. [Hint: You may care to take the common perpendicular as a special line.]

12. Fix a point P on the boundary of D, the disc model of the hyperbolic plane. Give a
description of the curves in D that are orthogonal to every hyperbolic line through P .

13. Let Q+ be the hyperboloid model of the hyperbolic plane. That is, take the “inner
product” 〈〈x,y〉〉 = x1y1+x2y2−x3y3 on R3, and let Q+ = {(x, y, z) ∈ R3 : x2+y2− z2 =
−1, z > 0}. Let D be the unit disc in the xy-plane of R3 and consider the map
Π : Q+ → D given by straight line projection from the point (0, 0,−1) ∈ R3 (in the same
way as stereographic projection). Show that Π(x, y, z) = (x/(1 + z), y/(1 + z)) ∈ D.
Using polar coordinates (r, θ) now for D, let σ(r, θ) be the inverse of Π. Work out a

formula for σ. What do we get for the “first fundamental form” of σ with respect to 〈〈 〉〉?

14. Let l be a hyperbolic line and P a point on l. Show that there is a unique hyperbolic
line l′ through P making an angle α with l (in a given sense). If α, β are positive numbers
with α + β < π, show that there exists a hyperbolic triangle (one vertex at infinity) with
angles 0, α and β. For any positive numbers α, β, γ, with α+ β + γ < π, show that there
exists a hyperbolic triangle with these angles. [Hint: For the last part, you may need a
continuity argument.]


