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1. Let f be an isometry from Euclidean n-space R
n onto Euclidean m-space R

m. By
following the proof in lectures of the classification of Euclidean isometries but for n 6= m
(or otherwise), show that in this case no such f exists.

2. Suppose that H is a hyperplane in Euclidean n-space R
n defined by u · x = c for some

unit vector u and constant c. The reflection in H is the map from R
n to itself given by

x 7→ x − 2(u · x − c)u. Show that this is an isometry. Letting P,Q be distinct points of
R

n, show that there is a reflection in some hyperplane that maps P to Q. Show that the
points fixed by this reflection are those which are equidistant from P and Q.

3. Suppose that l1 and l2 are non-parallel lines in the Euclidean plane R
2, and that ri

denotes the reflection of R2 in the line li, for i = 1, 2. Show that the composite r1r2 is a
rotation of R2, and describe (in terms of the lines l1 and l2) the resulting fixed point and
the angle of rotation.

4. Let R(P, θ) denote the clockwise rotation of R2 through an angle θ about a point P .
If A, B, C are the vertices, labelled clockwise, of a triangle in R

2, prove that
R(A, θ)R(B, φ)R(C,ψ) is the identity if and only if θ = 2α, φ = 2β and ψ = 2γ, where
α, β, γ denote the angles at, respectively, the vertices A,B,C of the triangle ABC.

5. Prove that any isometry of the unit sphere S2 is induced from (namely is the restriction
of) an isometry of R3 which fixes the origin. Prove also that any matrix A ∈ O(3,R) is the
product of at most three reflections in planes through the origin. Deduce that an isometry
of the unit sphere can be expressed as the product of at most three reflections in spherical
lines. What isometries are obtained from the product of two reflections? What isometries
are obtained from the product of three reflections?

6. By repeatedly applying the result from Question 2, when P is either 0 or one of the
standard basis vectors of Rn, deduce that any isometry T of Rn can be written as a com-
position of at most n+ 1 reflections.

7. Suppose that P is a point on the unit sphere S2. For fixed ρ, with 0 < ρ < π, the
spherical circle with centre P and radius ρ is the set of points Q ∈ S2 whose spherical
distance from P is ρ. Prove that a spherical circle of radius ρ on S2 has circumference
2π sin ρ and area 2π(1− cos ρ).

8. Given a spherical line l on the sphere S2 and a point P not on l, show that there is
a spherical line l′ passing through P and intersecting l at right-angles. Prove that the
minimum distance d(P,Q) of P from a point Q on l is attained at one of the two points of
intersection of l with l′, and that l′ is unique if this minimum distance is less than π/2.

9. Let π : S2 → C∞ denote the stereographic projection map. Show that the spherical
circles on S2 biject under π with the circles and straight lines on C.

10. Show that any Möbius transformation T 6= 1 on C∞ has one or two fixed points.
Show that the Möbius transformation corresponding (under the stereographic projection
map) to a rotation of S2 through a non-zero angle has exactly two fixed points z1 and z2,
where z2 = −1/z̄1. If now T is a Möbius transformation with two fixed points z1 and z2



satisfying z2 = −1/z̄1, prove that either T corresponds to a rotation of S2, or one of the
fixed points, say z1, is an attractive fixed point, i.e. for z 6= z2, T

nz → z1 as n→ ∞.

11. Prove that Möbius transformations of C∞ preserve cross-ratios. If u, v ∈ C correspond
to points P,Q on S2, and d denotes the angular distance from P to Q on S2, show that
− tan2 1

2
d is the cross-ratio of the points u, v,−1/ū,−1/v̄, taken in an appropriate order.

12. Just as for geodesic triangulations, we can consider geodesic polygonal decompositions
of the sphere S2 or the unit square torus T by convex geodesic polygons, where each poly-
gon is the intersection of finitely many hemispheres (for the case of S2), or is the bijective
image of a convex Euclidean polygon in R

2 under the map R
2 → T (for the case of T ). If

the number of faces (polygons) is F , the number of edges is E and the number of vertices
is V , show that F − E + V = 2 for the sphere, and = 0 for the torus. We denote by Fn

the number of faces with precisely n edges, and Vm the number of vertices where precisely
m edges meet: show that

∑
n
nFn = 2E =

∑
m
mVm.

We suppose that each face has at least three edges, and at least three edges meet at
each vertex. If V3 = 0, deduce that E ≥ 2V . If F3 = 0, deduce that E ≥ 2F . For the
sphere, deduce that V3 + F3 > 0. For the torus, exhibit a polygonal decomposition with
V3 = 0 = F3.

13. Suppose we have some metric d on the extended complex plane C∞ which is invariant
under the action of the Mobius group, that is for all z1, z2 ∈ C∞ and all Möbius maps f
we have d(f(z1), f(z2)) = d(z1, z2). What can we say about d? Deduce that (under the
correspondence via stereographic projection), not all Möbius maps act on the sphere S2

by rotations.

14. Given a geodesic polygonal decomposition of S2 (as in Question 12 with the same
notation) into spherical polygons, prove the identity

∑

n

(6− n)Fn = 12 + 2
∑

m

(m− 3)Vm.

If each face has at least three edges, and at least three edges meet at each vertex, deduce
the inequality 3F3 + 2F4 + F5 ≥ 12.
The surface of a football is decomposed into spherical hexagons and pentagons, with

precisely three faces meeting at each vertex. How many pentagons are there? Demonstrate
the existence of such a decomposition with each vertex contained in precisely one pentagon.

15. A spherical triangle △ = ABC has vertices given by unit vectors A, B and C in R
3,

sides of length a, b, c, and angles α, β, γ (where the side opposite vertex A is of length
a and the angle at A is α, etc.). The polar triangle A′B′C ′ is defined by the unit vectors
in the directions B×C, C×A and A×B. Prove that the sides and angles of the polar
triangle are π−α, π−β and π−γ, and π−a, π−b, π−c respectively. Deduce the formula

sinα sin β cos c = cos γ + cosα cos β.

Note to the reader: You should look at all the questions up to Question 12, and then
any further questions you have time for.


