EXAMPLE SHEET 3

Notation: on this sheet, \mathbb{H} denotes the hyperbolic plane, and is used in statements that make sense in any model. H is the upper half-plane model of \mathbb{H}, and D the disk model.

1. Find the perimeter and area of a circle of radius r on S^{2}; of a circle of radius r in the hyperbolic plane.
2. If L is the hyperbolic line in H given by a Euclidean semicircle with center $a \in \mathbb{R}$ and radius $r>0$, show that reflection in the line L is given by the formula

$$
\rho_{L}(z)=a+\frac{r^{2}}{\bar{z}-a} .
$$

3. If w is a point in the upper half-plane, show that the Mobius transformation φ given by $\varphi(z)=(z-w) /(z-\bar{w})$ defines an isometry from H to the disk model D of the hyperbolic plane. Deduce that if $z, w \in H$, the hyperbolic distance from z to w is given by $d(z, w)=2 \tanh ^{-1}|(z-w) /(z-\bar{w})|$.
4. Let C be a hyperbolic circle in H; show that C is also a Euclidean circle. If C has hyperbolic center ic $\left(c \in \mathbb{R}^{+}\right)$and hyperbolic radius r, find the radius and center of C regarded as a Euclidean circle.
5. Prove that the area of a convex hyperbolic n-gon with interior angles $\alpha_{1}, \ldots, \alpha_{n}$ is $(n-2) \pi-\sum \alpha_{i}$. Show that for every $n \geq 3$ and every α with $0 \leq \alpha \leq\left(1-\frac{2}{n}\right) \pi$, there is a regular hyperbolic n-gon all of whose interior angles are α.
6. Let L be a hyperbolic line, and let $\mathbf{p} \in \mathbb{H}$ be a point not on L. Show there is a unique hyperbolic line passing through \mathbf{p} and perpendicular to L. If L is a spherical line and $\mathbf{p} \in S^{2}$ is a point not on L, show that there is a spherical line passing through \mathbf{p} and perpendicular to L, but this line may not be unique.
7. Show that two hyperbolic lines L_{1}, L_{2} have a common perpendicular if and only if they are ultraparallel, and that in this case the perpendicular is unique. Let $\rho_{i}: \mathbb{H} \rightarrow \mathbb{H}$ be the reflection in L_{i}. Show that if L_{1} and L_{2} are ultraparallel, $\rho_{1} \circ \rho_{2}$ has infinite order. (Hint: take the common perpendicular as a special line.)
8. Show that two distinct Euclidean circles intersect in at most two points; deduce that the same holds for hyperbolic circles. If A_{1}, A_{2}, A_{3} and B_{1}, B_{2}, B_{3} are two sets of non-colinear points in \mathbb{H}, and $d\left(A_{i}, A_{j}\right)=d\left(B_{i}, B_{j}\right)$ for all choices of i and j, deduce that there is a unique $\varphi \in \operatorname{Isom}(\mathbb{H})$ with $\varphi\left(A_{i}\right)=B_{i}$.
9. Show that there is a constant k such that no hyperbolic triangle contains a hyperbolic circle of radius greater than k. What is the smallest such value of k ? Deduce that if $\triangle A B C$ is a hyperbolic triangle, then any point on $\overline{B C}$ is within hyperbolic distance $2 k$ of either $\overline{A B}$ or $\overline{A C}$.
10. * Fix a point \mathbf{p} on the boundary of D, and let L be a hyperbolic line through \mathbf{p}. Viewing L as a Euclidean circle, show that the center of L lies on the (Euclidean) line tangent to ∂D at \mathbf{p}. Let \mathbf{q} be a point in D not on L, and let L_{1} and L_{2} be the two horoparallels to L passing through \mathbf{q}. Express the angle between L_{1} and L_{2} in terms of the hyperbolic distance from \mathbf{q} to L.
11. Suppose we have a polygonal decomposition of S^{2} by convex geodesic polygons, where each polygon is contained in some hemisphere. Denote by F_{n} the number of faces with precisely n edges, and V_{m} the number of vertices where precisely m edges meet; show that $\sum_{n} n F_{n}=2 E=\sum_{m} m V_{m}$.
Suppose that $V_{i}=F_{i}=0$ for $i<3$. If in addition $V_{3}=0$, deduce that $E \geq 2 V$. Similarly, if $F_{3}=0$, deduce that $E \geq 2 F$. Conclude that $V_{3}+F_{3}>0$. Prove the identity

$$
\sum_{n}(6-n) F_{n}=12+2 \sum_{m}(m-3) V_{m} .
$$

Deduce that $3 F_{3}+2 F_{4}+F_{5} \geq 12$. The surface of a football is decomposed into spherical hexagons and pentagons, with precisely three faces meeting at each vertex. How many pentagons are there?
12. Let T be the torus obtained by rotating the circle $(x-2)^{2}+z^{2}=1$ around the z-axis. Find the Gauss curvature K of T, and identify the points on T where K is positive, negative, and zero. Verify that

$$
\int_{T} K d A=0 .
$$

13. Show that the embedded surface given by the equation $x^{2}+y^{2}+c^{2} z^{2}=1(c>0)$ is homeomorphic to S^{2}. Deduce from the global Gauss-Bonnet theorem that

$$
\int_{0}^{1}\left(1+\left(c^{2}-1\right) u^{2}\right)^{-3 / 2} d u=c^{-1} .
$$

14. * Show that a genus two surface can be obtained by appropriately identifying the sides of a regular octogon. Use problem 5 to show that the genus two surface admits a Riemannian metric with constant curvature $K=-1$.
