EXAMPLE SHEET 3

Notation: on this sheet, \mathbb{H} denotes the hyperbolic plane, and is used in statements that make sense in any model. *H* is the upper half-plane model of \mathbb{H} , and *D* the disk model.

- 1. Find the perimeter and area of a circle of radius r on S^2 ; of a circle of radius r in the hyperbolic plane.
- 2. If L is the hyperbolic line in H given by a Euclidean semicircle with center $a \in \mathbb{R}$ and radius r > 0, show that reflection in the line L is given by the formula

$$\rho_L(z) = a + \frac{r^2}{\overline{z} - a}.$$

- 3. If w is a point in the upper half-plane, show that the Mobius transformation φ given by $\varphi(z) = (z - w)/(z - \overline{w})$ defines an isometry from H to the disk model D of the hyperbolic plane. Deduce that if $z, w \in H$, the hyperbolic distance from z to w is given by $d(z, w) = 2 \tanh^{-1} |(z - w)/(z - \overline{w})|$.
- 4. Let C be a hyperbolic circle in H; show that C is also a Euclidean circle. If C has hyperbolic center $ic \ (c \in \mathbb{R}^+)$ and hyperbolic radius r, find the radius and center of C regarded as a Euclidean circle.
- 5. Prove that the area of a convex hyperbolic *n*-gon with interior angles $\alpha_1, \ldots, \alpha_n$ is $(n-2)\pi \sum \alpha_i$. Show that for every $n \geq 3$ and every α with $0 \leq \alpha \leq (1-\frac{2}{n})\pi$, there is a regular hyperbolic *n*-gon all of whose interior angles are α .
- 6. Let L be a hyperbolic line, and let $\mathbf{p} \in \mathbb{H}$ be a point not on L. Show there is a unique hyperbolic line passing through \mathbf{p} and perpendicular to L. If L is a spherical line and $\mathbf{p} \in S^2$ is a point not on L, show that there is a spherical line passing through \mathbf{p} and perpendicular to L, but this line may not be unique.
- 7. Show that two hyperbolic lines L_1, L_2 have a common perpendicular if and only if they are ultraparallel, and that in this case the perpendicular is unique. Let $\rho_i : \mathbb{H} \to \mathbb{H}$ be the reflection in L_i . Show that if L_1 and L_2 are ultraparallel, $\rho_1 \circ \rho_2$ has infinite order. (*Hint:* take the common perpendicular as a special line.)
- 8. Show that two distinct Euclidean circles intersect in at most two points; deduce that the same holds for hyperbolic circles. If A_1, A_2, A_3 and B_1, B_2, B_3 are two sets of non-colinear points in \mathbb{H} , and $d(A_i, A_j) = d(B_i, B_j)$ for all choices of i and j, deduce that there is a unique $\varphi \in \text{Isom}(\mathbb{H})$ with $\varphi(A_i) = B_i$.

- 9. Show that there is a constant k such that no hyperbolic triangle contains a hyperbolic circle of radius greater than k. What is the smallest such value of k? Deduce that if $\triangle ABC$ is a hyperbolic triangle, then any point on \overline{BC} is within hyperbolic distance 2k of either \overline{AB} or \overline{AC} .
- 10. * Fix a point **p** on the boundary of D, and let L be a hyperbolic line through **p**. Viewing L as a Euclidean circle, show that the center of L lies on the (Euclidean) line tangent to ∂D at **p**. Let **q** be a point in D not on L, and let L_1 and L_2 be the two horoparallels to L passing through **q**. Express the angle between L_1 and L_2 in terms of the hyperbolic distance from **q** to L.
- 11. Suppose we have a polygonal decomposition of S^2 by convex geodesic polygons, where each polygon is contained in some hemisphere. Denote by F_n the number of faces with precisely n edges, and V_m the number of vertices where precisely m edges meet; show that $\sum_n nF_n = 2E = \sum_m mV_m$.

Suppose that $V_i = F_i = 0$ for i < 3. If in addition $V_3 = 0$, deduce that $E \ge 2V$. Similarly, if $F_3 = 0$, deduce that $E \ge 2F$. Conclude that $V_3 + F_3 > 0$. Prove the identity

$$\sum_{n} (6-n)F_n = 12 + 2\sum_{m} (m-3)V_m$$

Deduce that $3F_3 + 2F_4 + F_5 \ge 12$. The surface of a football is decomposed into spherical hexagons and pentagons, with precisely three faces meeting at each vertex. How many pentagons are there?

12. Let T be the torus obtained by rotating the circle $(x - 2)^2 + z^2 = 1$ around the z-axis. Find the Gauss curvature K of T, and identify the points on T where K is positive, negative, and zero. Verify that

$$\int_T K \, dA = 0.$$

13. Show that the embedded surface given by the equation $x^2 + y^2 + c^2 z^2 = 1$ (c > 0) is homeomorphic to S^2 . Deduce from the global Gauss-Bonnet theorem that

$$\int_0^1 (1 + (c^2 - 1)u^2)^{-3/2} \, du = c^{-1}.$$

14. * Show that a genus two surface can be obtained by appropriately identifying the sides of a regular octogon. Use problem 5 to show that the genus two surface admits a Riemannian metric with constant curvature K = -1.

J.Rasmussen@dpmms.cam.ac.uk