EXAMPLE SHEET 2

- 1. Let $g = f(x) dx^2$ be an arbitrary Riemannian metric on \mathbb{R} . Show that (\mathbb{R}, g) is isometric to the Euclidean metric $g_E = dx^2$ on an open interval $(a, b) \subset \mathbb{R}$. (Hint: parametrize by arc-length.)
- 2. Let S be the cylinder $\{(x, y, z) | x^2 + y^2 = 1\}$. Check directly that the curve $\gamma(t) = (\cos at, \sin at, bt + c)$ satisfies the relation $\gamma''(t) \perp S$.
- 3. Let S be the surface obtained by rotating the curve x = f(z) around the z-axis. Show that for any fixed value of θ , the curve $\gamma(t) = (f(t) \cos \theta, f(t) \sin \theta, t)$ is a geodesic on S. For which values of z is the curve $\gamma(t) = (f(z) \cos t, f(z) \sin t, z)$ a geodesic?
- 4. For a > 0, let S be the circular half-cone $\{(x, y, z) | z^2 = a(x^2 + y^2), z > 0\}$. Show that S minus a ray through the origin is locally isometric to the Euclidean plane. (Hint: identify the edges of a circular sector.) When a = 3, give an explicit formula for the geodesics on S and show that no geodesic intersects itself. For a > 3, show that there are geodesics which intersect themselves.
- 5. Let \mathbf{x} and \mathbf{y} be points in \mathbb{R}^n . Show that the line segment from \mathbf{x} to \mathbf{y} is the unique minimizer of the energy functional $E_g : \mathcal{P}_{\mathbf{x},\mathbf{y}}(\mathbb{R}^n) \to \mathbb{R}$.
- 6. Let V be the set of smooth functions $f : [0,1] \to \mathbb{R}$ such that $\int_0^1 f(t) dt = k$. If $F : V \to \mathbb{R}$ is given by $F(f) = \int_0^1 f(t)^2 dt$, show that the only critical point of F is the constant function f(t) = k. Deduce that geodesics have constant speed.
- 7. Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a smooth function, and let $\sigma : \mathbb{R}^2 \to \mathbb{R}^3$ be given by $\sigma(u, v) = (u, v, F(u, v))$ Show that the Gauss curvature of σ is given by

$$\frac{F_{uu}F_{vv} - F_{uv}^2}{(1 + F_u^2 + F_v^2)^2}.$$

8. Let γ be an embedded curve in the xz plane given by the parametrization $\gamma(t) = (f(t), 0, g(t))$, and let S be the surface obtained by rotating γ around the z-axis. Show that the Gauss curvature of S is

$$K = \frac{g'(f'g'' - f''g')}{f(f'^2 + g'^2)^2}.$$

If γ is parametrized so as to have unit speed, show this reduces to K = -f''/f. How is the sign of K related to the concavity of γ ?

- 9. Using the previous question, compute the Gauss curvature of the surfaces given by the equations $x^2 + y^2 z^2 = 1$ and $x^2 + y^2 z^2 = -1$. Describe the qualitative properties of the curvature in these cases (sign and behavior near ∞) and explain what you find using pictures of these surfaces.
- 10. Let S be a compact embedded surface in \mathbb{R}^3 . By considering the smallest closed ball centered at the origin which contains S, show that the Gauss curvature must be strictly positive at some point of S.
- 11. Let *D* be an open disc centered at the origin in \mathbb{R}^2 . Give *D* a Riemannian metric of the form $(dx^2 + dy^2)/f(r)^2$, where $r = \sqrt{x^2 + y^2}$ and f(r) > 0. Show that the Gauss curvature of this metric is $K = ff'' (f')^2 + ff'/r$.
- 12. Let U be an open set in \mathbb{R}^2 equipped with a Riemannian metric, and let **p** be a point in U. Suppose that in geodesic polar coordinates centered at **p**, the metric has the form $g = dr^2 + h(r)^2 d\theta^2$, and that the Taylor series of h converges to h in some neighborhood of r = 0. Show that the first two nontrivial terms of the Taylor series have the form $h(r) = r Kr^3/6 + \ldots$, where K is the Gauss curvature at **p**. Deduce that if A(r) is the area of the disc of radius r centered at **p**, then $A(r) = \pi(r^2 Kr^4/12 + \ldots)$.
- 13. * Suppose S is a surface of revolution obtained by rotating a curve γ in the xz-plane about the z-axis. Find conditions on γ so that the Gauss curvature of S is identically -1. (Hint: parametrize by arc length.) Can you find γ so that the surface S is geodesically complete?
- 14. * Let S be an embedded surface in \mathbb{R}^3 , let **x** be a point on S, and let **n** be the unit normal to S at **x**. For $\mathbf{v} \in T_{\mathbf{x}}S$, let $\gamma_{\mathbf{v}}$ be the plane curve obtained as the intersection of S with the plane passing through **x** and spanned by the vectors **n** and **v**. We can view the second fundamental form of S as a bilinear map $B_{II}: T_{\mathbf{x}}S \times T_{\mathbf{x}}S \to \mathbb{R}$. Show that if $\mathbf{v} \in T_{\mathbf{x}}S$ has $|\mathbf{v}| = 1$, then $B_{II}(\mathbf{v}, \mathbf{v})$ is the curvature of $\gamma_{\mathbf{v}}$ at the point **x**.

J.Rasmussen@dpmms.cam.ac.uk