IB GEOMETRY

EXAMPLE SHEET 1

- 1. If R_1 and R_2 are two rays in \mathbb{R}^n , show that there is some $\phi \in \text{Isom}(\mathbb{R}^n)$ with $\phi(R_1) = R_2$. Describe the set of all such ϕ .
- 2. Suppose that L_1 and L_2 are non-parallel lines in \mathbb{R}^2 , and that $\rho_i : \mathbb{R}^2 \to \mathbb{R}^2$ denotes the reflection in the line L_i for i = 1, 2. Show that the composition $\rho_1 \rho_2$ is a rotation. Describe the center and angle of rotation in terms of L_1 and L_2 .
- 3. Suppose that H is a hyperplane in \mathbb{R}^n defined by the equation $\mathbf{u} \cdot \mathbf{x} = c$ for some unit vector \mathbf{u} and constant c. The reflection in H is the map $\mathbb{R}^n \to \mathbb{R}^n$ given by $\mathbf{x} \mapsto \mathbf{x} 2(\mathbf{x} \cdot \mathbf{u} c)\mathbf{u}$. Show this is an isometry. If \mathbf{x} and \mathbf{y} are points of \mathbb{R}^n , show that there is a hyperplane $H_{\mathbf{x},\mathbf{y}}$ so that reflection in $H_{\mathbf{x},\mathbf{y}}$ maps \mathbf{x} to \mathbf{y} .
- 4. Let \mathbf{x} and \mathbf{y} be two distinct points in \mathbb{R}^n . Show that if $|\mathbf{x}-\mathbf{z}| = |\mathbf{y}-\mathbf{z}|$, then $\mathbf{z} \in H_{\mathbf{x},\mathbf{y}}$. Deduce that every isometry of \mathbb{R}^n is the product of at most n + 1 reflections.
- 5. Suppose that $\phi \in \text{Isom}(\mathbb{R}^2)$. Show that there is either a point $\mathbf{x} \in \mathbb{R}^2$ with $\phi(\mathbf{x}) = \mathbf{x}$ or a line L with $\phi(L) = L$. Conclude that ϕ is either (a) a translation, (b) a rotation, (c) a reflection, or (d) a composition $\rho \circ T$, where ρ is reflection in a line L and and T is translation by some vector parallel to L. How many reflections are needed to generate an isometry of each type?
- 6. Let G be a finite subgroup of $\text{Isom}(\mathbb{R}^n)$. By considering the barycentre (*i.e.* average) of the orbit of the origin under G, show that G fixes some point of \mathbb{R}^n . If n = 2, show that G is either cyclic or *dihedral* (that is $D_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$, and for $n \geq 3$, D_{2n} is the full symmetry group of a regular 2n-gon.)
- 7. Suppose γ : [a, b] → ℝ² is a smooth curve parametrized by arc length. Let n(s) be the unit normal vector to γ'(s), chosen so that (γ'(s), n(s)) is a positively oriented basis of ℝ². Show that γ''(s) = κ(s)n(s) for some κ(s) : [a, b] → ℝ. κ(s) is the curvature of γ at γ(s). Show that the curvature of a circle of radius R is 1/R.
 *If γ : [a, b] → ℝ² is an arbitrary smooth curve in ℝ², we define its curvature at γ(t) to be the curvature of γ's reparametrization by arc length. Suppose γ : [0, 2π] → ℝ²

is a smooth simple closed curve given in polar coordinates (r, θ) by

$$r = r(t) > 0, \quad \theta = t, \quad \text{where} \quad r(0) = r(2\pi), \quad r'(0) = r'(2\pi).$$

Show that the *total curvature* $\int_{\gamma} \kappa(s) ds = 2\pi$. Relate this to the theorem in plane geometry that says that the sum of the exterior angles of a convex polygon is 2π .

Can you find a smooth closed curve γ whose total curvature is 0?

- 8. Let $\sigma : U \to \mathbb{R}^3$ be an embedded parametrized surface, and let $\mathbf{n}_{(u,v)}$ be the unit normal to σ at $\sigma(u, v)$. Let C be a compact subset of U. Define a map $\Sigma : C \times \mathbb{R} \to \mathbb{R}^3$ by $\Sigma(u, v, w) = \sigma(u, v) + w\mathbf{n}_{(u,v)}$, and let V(t) be the volume of $\Sigma(C \times [0, t]) \subset \mathbb{R}^3$.
 - (a) Assuming that for small ϵ , Σ is injective when restricted to $C \times [0, \epsilon]$, show that V'(0) is the surface area of $\sigma(C)$. (This says we can find the surface area by covering $\sigma(C)$ with a thin layer of paint and seeing how much paint we used.)
 - (b) * Prove that the assumption holds.
- 9. For each map $\sigma: U \to \mathbb{R}^3$, find the Riemannian metric on U induced by σ . Sketch the image of σ in \mathbb{R}^3 .
 - (a) $U = \{(u, v) \in \mathbb{R}^2 \mid u > v\}, \sigma(u, v) = (u + v, 2uv, u^2 + v^2).$
 - (b) $U = \{(r, z) \in \mathbb{R}^2 | r > 0\}, \sigma(r, z) = (r \cos z, r \sin z, z).$
 - (c) $U = (0, 2\pi) \times (0, 2\pi), \ \sigma(\theta, \phi) = ((a + b\cos\phi)\cos\theta, (a + b\cos\phi)\sin\theta, b\sin\phi)$ where a > b.
- 10. Let S be the complement of the points $(0, 0, \pm 1)$ in S^2 , and let $C = \{(x, y, z) | x^2 + y^2 = 1\}$ be a cylinder of radius 1. If $\phi : S \to C$ is the map given by radial projection from the z axis, show that ϕ is area-preserving.
- 11. Define a Riemannian metric on the unit disk $D \subset \mathbb{R}^2$ by $(du^2 + dv^2)/(1 u^2 v^2)$. Prove that the diameters are length-minimizing curves for this metric. Show that distances in this metric are bounded, but areas can be unbounded.
- 12. Let $V \subset \mathbb{R}^2$ be the square |u|, |v| < 1, and define two Riemannian metrics on V by

$$\frac{du^2}{(1-u^2)^2} + \frac{dv^2}{(1-v^2)^2}$$
 and $\frac{du^2}{(1-v^2)^2} + \frac{dv^2}{(1-u^2)^2}$

Prove that there is no isometry between the spaces, but that there is an area preserving diffeomorphism between them. (*Hint:* show that in one space there are curves of finite length going out to the boundary, while in the other no such curves exist.)

- 13. Suppose U is an open subset of \mathbb{C} , and that $f: U \to \mathbb{C}$ is a holomorphic map. (If we identify \mathbb{C} with \mathbb{R}^2 via z = x + iy, this means that $D_w f(iz) = iD_w(z)$). If we equip the range of f with the Euclidean metric $dx^2 + dy^2$, what is the Riemannian metric on U induced by f? Deduce that if $f'(z) \neq 0$ for $z \in U$, then f is conformal.
- 14. * By evaluating the integral $\int_{\mathbb{R}^{n+1}} e^{-|\mathbf{x}|^2} d\mathbf{x}$ in two ways, express the *n*-dimensional volume of the *n*-dimensional sphere S^n in terms of the function $\Gamma(k) = \int_0^\infty r^{k-1} e^{-r} dr$. Show that $\Gamma(k+1) = k\Gamma(k)$, and thus compute the volume of S^n .

J.Rasmussen@dpmms.cam.ac.uk