
IB GEOMETRY LENT 2013

EXAMPLE SHEET 3

1. Using the geodesic equations, show directly that the geodesics in the hyperbolic plane are
hyperbolic lines parametrized with constant speed. (Hint: first consider vertical lines in the
upper half-plane model.)

2. Let S be the cylinder S = {(x, y, z) |x2 + y2 = 1}. Prove that S is locally isometric to the
Euclidean plane. Show all geodesics on S are spirals of the form γ(t) = (cos at, sin at, bt)
where a2 + b2 = 1.

3. For a > 0, let S be the circular half-cone Σ = {(x, y, z) | z2 = a(x2 + y2), z > 0}. Show that
Σ minus a ray through the origin is locally isometric to the Euclidean plane. (Hint: identify
the edges of a circular sector.) When a = 3, give an explicit formula for the geodesics on S
and show that no geodesic intersects itself. For a > 3 show that there are geodesics which
intersect themselves.

4. Let V be the set of smooth functions f : [0, 1] → R such that
∫ 1

0
f(t)dt = k. If F : V → R is

given by F (f) =
∫ 1

0
f(t)2dt, show that the only critical point of F is the constant function

f(t) = k. Deduce that geodesics have constant speed.

5. Let gD be the hyperbolic metric on the unit disk. How are geodesic polar coordinates centered
at the origin related to usual (Euclidean) polar coordinates on D? Show that with respect to
geodesic polar coordinates, the hyperbolic metric takes the form dr2 + sinh2r dθ2. Conclude
that at every point of D, the Gauss curvature is −1. What happens if instead of gD, we use
the spherical metric gS on C?

6. Find an atlas of charts on S2 for which each chart preserves area, and the transition func-
tions relating charts have derivatives with determinant 1. (Hint: consider the circumscribed
cylinder.)

7. Let F : R2 → R be a smooth function, and let S ⊂ R3 be its graph. Show that S is an
embedded surface, and that its Gauss curvature at the point (x, y, F (x, y)) is the value of

FxxFyy − F 2
xy

(1 + F 2
x + F 2

y )2

at the point (x, y).

8. Let γ be an embedded curve in the xz-plane given by the parametrization γ(t) = (f(t), 0, g(t)),
where f(t) > 0 for all t, and let S be the surface obtained by rotating γ around the z-axis.
Show that the Gauss curvature of S is

K =
(ḟ g̈ − f̈ ġ)ġ
f(ḟ2 + ġ2)2

.

If γ is parametrized so as to have unit speed (ḟ2 + ġ2 = 1), show that this reduces to
K = −f̈/f .
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9. Using the previous question, compute the Gauss curvature of the surfaces given by the
equations x2 + y2− z2 = 1 and x2 + y2− z2 = −1. Describe the qualitative properties of the
curvature in these cases (sign and behavior near ∞) and explain what you find using pictures
of these surfaces.

10. Let T be the torus obtained by rotating the circle (x− 2)2 + z2 = 1 around the z-axis. Find
the Gauss curvature K of T , and identify the points on T where K is positive, negative, and
zero. Verify that ∫

T

K dA = 0.

11. Let D be an open disc centered at the origin in R2. Give D a Riemannian metric of the
form (dx2 + dy2)/f(r)2, where r =

√
x2 + y2 and f(r) > 0. Show that the curvature of this

metric is K = ff ′′ − (f ′)2 + ff ′/r.

12. Show that the embedded surface given by the equation x2 + y2 + c2z2 = 1 (c > 0) is
homeomorphic to S2. Deduce from the global Gauss-Bonnet theorem that∫ 1

0

(1 + (c2 − 1)u2)−3/2du = c−1.

Can you verify this formula directly?

13. Let S be a compact embedded surface in R3. By considering the smallest closed ball centered
at the origin which contains S, show that the Gauss curvature must be strictly positive at
some point of S. Conclude that the locally Euclidean metric on the torus cannot obtained
as the first fundamental form of a smoothly embedded torus in R3.

14. Show that a genus two surface can be obtained by appropriately identifying the sides of a
regular octogon. Using problem 10 on example sheet 2, show that the genus two surface
admits a Riemannian metric with constant curvature K = −1. Explain how to generalize
your argument to arbitrary surfaces of genus g > 1.

15. Let p be a point on a surface S ⊂ R3, and let n be normal to S at p. If v ∈ Tp(S) let Hv be
the plane spanned by n and v, and let Cv = S ∩Hv. Show that BII(v,v) is the curvature
(in the sense of problem 14 on example sheet 1) of Cv.

16. Suppose S is a surface of revolution obtained by rotating a curve γ in the xz-plane about
the z-axis. Find γ such that the Gauss curvature of S is identically −1.
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