
IB GEOMETRY LENT 2013

EXAMPLE SHEET 1

1. Let v1 and v2 be vectors in Euclidean space, and let v3 = av1 + bv2, where a, b > 0.
Show that ∠v1v2 = ∠v1v3 + ∠v3v2. (Hint: choose an advantageous basis.)

2. Show that the sum of the interior angles in a Euclidean triangle is π. Why doesn’t
your argument work on the sphere? Show that the sum of the exterior angles of a
convex polygon in the Euclidean plane is 2π.

3. Suppose that L1 and L2 are non-parallel lines in R2, and that Ri : R2 → R2 denotes
the reflection in the line Li for i = 1, 2. Show that the composition R1R2 is a
rotation. Describe the center and angle of rotation in terms of L1 and L2.

4. Suppose that H is a hyperplane in Rn defined by the equation u · x = c for some
unit vector u and constant c. The reflection in H is the map from Rn to itself given
by x 7→ x − 2(x · u − c)u. Show this is an isometry. If p and q are points of Rn,
show that there is an H so that reflection in H maps p to q.

5. Let x and y be two points in Rn. Show that the set of points in Rn which are
equidistant from x and y is a hyperplane orthogonal to the line segment xy and
passing through its midpoint. (Hint: after applying an isometry, it suffices to con-
sider the case where x and y lie on a coordinate axis.) Deduce that every isometry
of Rn is the product of at most n + 1 reflections, and that every isometry of S2 is
the product of at most 3 reflections.

6. Show that two distinct Euclidean circles intersect in at most two points. If A1, A2, A3

and B1, B2, B3 are two sets of non-colinear points in R2, and d(Ai, Aj) = d(Bi, Bj)
for all choices of i and j, deduce that there is a unique φ ∈ Isom(R2) with φ(Ai) = Bi.

7. Let G be a finite subgroup of Isom(Rn). By considering the barycentre (i.e. average)
of the orbit of the origin under G, show that G fixes some point of Rn. If n = 2,
show that G is either cyclic or dihedral (that is D4 = Z/2×Z/2, and for n ≥ 3, D2n

is the full symmetry group of a regular 2n-gon.)

8. Let ∆ be a spherical triangle with sides of length a, b, c and opposite angles α, β, γ.
Extend the sides of ∆ to form complete great circles. Show that this divides the
sphere into 8 triangles and find the side lengths and angles for each.

9. Find the circumference and area of a circle of radius r on S2.

10. Prove that Mobius transformations of C∞ preserve cross ratios. If u, v,∈ C corre-
spond to points p,q on S2, and d denotes the angular distance from p to q on S2,
show that − tan2(d/2) is the cross ratio of the points u, v,−1/u,−1/v, taken in an
appropriate order.

11. Show that any Möbius transformation T 6= 1 on C∞ has one or two fixed points.
Show that the Möbius transformation corresponding (under the stereographic pro-
jection map) to a rotation of S2 through a nonzero angle has exactly two fixed points
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z1 and z2 = −1/z1. If T is a Möbius transformation with two fixed points z1 and
z2 = −1/z1, show that either T corresponds to a rotation of S2, or one of the fixed
points — say z1 — is an attracting fixed point; that is for z 6= z2, T

nz → z1 as
n→∞.

12. Suppose we have a polygonal decomposition of S2 by convex geodesic polygons,
where each polygon is contained in some hemisphere. Denote by Fn the number of
faces with precisely n edges, and Vm the number of vertices where precisely m edges
meet; show that

∑
n nFn = 2E =

∑
mmVm.

Suppose that Vi = Fi = 0 for i < 3. If in addition V3 = 0 , deduce that E ≥ 2V .
Similarly, if F3 = 0, deduce that E ≥ 2F . Conclude that V3 + F3 > 0. Prove the
identity ∑

n

(6− n)Fn = 12 + 2
∑
m

(m− 3)Vm.

Deduce that 3F3 + 2F4 + F5 ≥ 12. The surface of a football is decomposed into
spherical hexagons and pentagons, with precisely three faces meeting at each vertex.
How many pentagons are there?

13. Suppose that φ ∈ Isom(R2). Show that there is either a point x ∈ R2 with φ(x) = x
or a line L with φ(L) = L. Conclude that φ is either (a) a translation, (b) a rotation,
(c) a reflection, or (d) a composition R ◦T , where R is reflection in a line L and and
T is translation by some vector parallel to L. How does this relate to problem 5?

14. Suppose γ : [0, 1] → R2 is a smooth curve with |γ′(t)| = 1. Let n(t) be the unit
normal vector to γ′(t), chosen so that (γ′(t),n(t)) is a positively oriented basis of R2.
Show that γ′′(t) = κ(t)n(t) for some κ(t) : [0, 1]→ R and that |κ(t)| = 1/R(t), where
R(t) is the radius of the Euclidean circle which is “maximally tangent” to γ at γ(t).
If γ is a smooth simple closed curve given in polar coordinates by r = r(θ) > 0, show
that the total curvature

∫
κ(t)dt = ±2π. What does this have to do with problem

2? Give an example of a closed γ whose total curvature is 0.

15. A spherical triangle ∆ = ABC has vertices given by unit vectors A,B,C in R3,
sides of length a, b, c, and angles α, β, γ. The polar triangle A′B′C ′ is defined by the
unit vectors in the directions B×C, C×A, and B×A. Prove that the sides and
angles of the polar triangle are π − α, π − β, π − γ, and π − a, π − b and π − c,
respectively. Deduce that

sinα sinβ cos c = cos γ + cosα cosβ.

16. Find X ⊂ R2 such that (a) any two points x, y ∈ X can be joined by a continuous
path γ : [0, 1]→ X and (b) for x 6= y the length of any such path is infinite.
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