EXAMPLE SHEET 1

- 1. Let \mathbf{v}_1 and \mathbf{v}_2 be vectors in Euclidean space, and let $\mathbf{v}_3 = a\mathbf{v}_1 + b\mathbf{v}_2$, where a, b > 0. Show that $\angle \mathbf{v}_1 \mathbf{v}_2 = \angle \mathbf{v}_1 \mathbf{v}_3 + \angle \mathbf{v}_3 \mathbf{v}_2$. (Hint: choose an advantageous basis.)
- 2. Show that the sum of the interior angles in a Euclidean triangle is π . Why doesn't your argument work on the sphere? Show that the sum of the exterior angles of a convex polygon in the Euclidean plane is 2π .
- 3. Suppose that L_1 and L_2 are non-parallel lines in \mathbb{R}^2 , and that $R_i : \mathbb{R}^2 \to \mathbb{R}^2$ denotes the reflection in the line L_i for i = 1, 2. Show that the composition R_1R_2 is a rotation. Describe the center and angle of rotation in terms of L_1 and L_2 .
- 4. Suppose that H is a hyperplane in \mathbb{R}^n defined by the equation $\mathbf{u} \cdot \mathbf{x} = c$ for some unit vector \mathbf{u} and constant c. The reflection in H is the map from \mathbb{R}^n to itself given by $\mathbf{x} \mapsto \mathbf{x} 2(\mathbf{x} \cdot \mathbf{u} c)\mathbf{u}$. Show this is an isometry. If \mathbf{p} and \mathbf{q} are points of \mathbb{R}^n , show that there is an H so that reflection in H maps \mathbf{p} to \mathbf{q} .
- 5. Let \mathbf{x} and \mathbf{y} be two points in \mathbb{R}^n . Show that the set of points in \mathbb{R}^n which are equidistant from \mathbf{x} and \mathbf{y} is a hyperplane orthogonal to the line segment \mathbf{xy} and passing through its midpoint. (Hint: after applying an isometry, it suffices to consider the case where \mathbf{x} and \mathbf{y} lie on a coordinate axis.) Deduce that every isometry of \mathbb{R}^n is the product of at most n + 1 reflections, and that every isometry of S^2 is the product of at most 3 reflections.
- 6. Show that two distinct Euclidean circles intersect in at most two points. If A_1, A_2, A_3 and B_1, B_2, B_3 are two sets of non-colinear points in \mathbb{R}^2 , and $d(A_i, A_j) = d(B_i, B_j)$ for all choices of *i* and *j*, deduce that there is a unique $\phi \in \text{Isom}(\mathbb{R}^2)$ with $\phi(A_i) = B_i$.
- 7. Let G be a finite subgroup of Isom(\mathbb{R}^n). By considering the barycentre (*i.e.* average) of the orbit of the origin under G, show that G fixes some point of \mathbb{R}^n . If n = 2, show that G is either cyclic or *dihedral* (that is $D_4 = \mathbb{Z}/2 \times \mathbb{Z}/2$, and for $n \geq 3$, D_{2n} is the full symmetry group of a regular 2n-gon.)
- 8. Let Δ be a spherical triangle with sides of length a, b, c and opposite angles α, β, γ . Extend the sides of Δ to form complete great circles. Show that this divides the sphere into 8 triangles and find the side lengths and angles for each.
- 9. Find the circumference and area of a circle of radius r on S^2 .
- 10. Prove that Mobius transformations of \mathbb{C}_{∞} preserve cross ratios. If $u, v \in \mathbb{C}$ correspond to points \mathbf{p}, \mathbf{q} on S^2 , and d denotes the angular distance from \mathbf{p} to \mathbf{q} on S^2 , show that $-\tan^2(d/2)$ is the cross ratio of the points $u, v, -1/\overline{u}, -1/\overline{v}$, taken in an appropriate order.
- 11. Show that any Möbius transformation $T \neq 1$ on \mathbb{C}_{∞} has one or two fixed points. Show that the Möbius transformation corresponding (under the stereographic projection map) to a rotation of S^2 through a nonzero angle has exactly two fixed points

 z_1 and $z_2 = -1/\overline{z}_1$. If T is a Möbius transformation with two fixed points z_1 and $z_2 = -1/\overline{z}_1$, show that either T corresponds to a rotation of S^2 , or one of the fixed points — say z_1 — is an attracting fixed point; that is for $z \neq z_2$, $T^n z \to z_1$ as $n \to \infty$.

12. Suppose we have a polygonal decomposition of S^2 by convex geodesic polygons, where each polygon is contained in some hemisphere. Denote by F_n the number of faces with precisely n edges, and V_m the number of vertices where precisely m edges meet; show that $\sum_n nF_n = 2E = \sum_m mV_m$.

Suppose that $V_i = F_i = 0$ for i < 3. If in addition $V_3 = 0$, deduce that $E \ge 2V$. Similarly, if $F_3 = 0$, deduce that $E \ge 2F$. Conclude that $V_3 + F_3 > 0$. Prove the identity

$$\sum_{n} (6-n)F_n = 12 + 2\sum_{m} (m-3)V_m.$$

Deduce that $3F_3 + 2F_4 + F_5 \ge 12$. The surface of a football is decomposed into spherical hexagons and pentagons, with precisely three faces meeting at each vertex. How many pentagons are there?

- 13. Suppose that $\phi \in \text{Isom}(\mathbb{R}^2)$. Show that there is either a point $x \in \mathbb{R}^2$ with $\phi(x) = x$ or a line L with $\phi(L) = L$. Conclude that ϕ is either (a) a translation, (b) a rotation, (c) a reflection, or (d) a composition $R \circ T$, where R is reflection in a line L and and T is translation by some vector parallel to L. How does this relate to problem 5?
- 14. Suppose $\gamma : [0,1] \to \mathbb{R}^2$ is a smooth curve with $|\gamma'(t)| = 1$. Let $\mathbf{n}(t)$ be the unit normal vector to $\gamma'(t)$, chosen so that $(\gamma'(t), \mathbf{n}(t))$ is a positively oriented basis of \mathbb{R}^2 . Show that $\gamma''(t) = \kappa(t)\mathbf{n}(t)$ for some $\kappa(t) : [0,1] \to \mathbb{R}$ and that $|\kappa(t)| = 1/R(t)$, where R(t) is the radius of the Euclidean circle which is "maximally tangent" to γ at $\gamma(t)$. If γ is a smooth simple closed curve given in polar coordinates by $r = r(\theta) > 0$, show that the total curvature $\int \kappa(t)dt = \pm 2\pi$. What does this have to do with problem 2? Give an example of a closed γ whose total curvature is 0.
- 15. A spherical triangle $\Delta = ABC$ has vertices given by unit vectors $\mathbf{A}, \mathbf{B}, \mathbf{C}$ in \mathbb{R}^3 , sides of length a, b, c, and angles α, β, γ . The *polar triangle* A'B'C' is defined by the unit vectors in the directions $\mathbf{B} \times \mathbf{C}, \mathbf{C} \times \mathbf{A}$, and $\mathbf{B} \times \mathbf{A}$. Prove that the sides and angles of the polar triangle are $\pi \alpha, \pi \beta, \pi \gamma$, and $\pi a, \pi b$ and πc , respectively. Deduce that

 $\sin\alpha\sin\beta\cos c = \cos\gamma + \cos\alpha\cos\beta.$

16. Find $X \subset \mathbb{R}^2$ such that (a) any two points $x, y \in X$ can be joined by a continuous path $\gamma : [0, 1] \to X$ and (b) for $x \neq y$ the length of any such path is infinite.

J.Rasmussen@dpmms.cam.ac.uk