
Part IB GEOMETRY, Examples sheet 2 (Lent 2011, Burt Totaro)

(1) Let U be an open subset of R2 equipped with a Riemannian metric

E du2 + 2F du dv + G dv2.

For P any point of U , prove that there is a λ > 0 and an open neighbourhood V of P in U such that

(E − λ)du2 + 2F du dv + (G− λ)dv2

is a Riemannian metric on V . [Hint: A real matrix
(

a b
b c

)
is positive definite if and only if a > 0 and

ac > b2.]
If U is path-connected, we define the distance between two points of U to be the infimum of the lengths

of curves joining them; prove that this defines a metric on U . Give an example where this distance is not
realized as the length of any curve joining the points.

(2) Define a Riemannian metric on the unit disc D ⊂ C by (du2 + dv2)/(1 − u2 − v2). Prove that the
diameters (monotonically parametrized) are length-minimizing curves for this metric. Defining the distance
between two points of D as in Question 1, show that the distances in this metric are bounded, but the areas
are unbounded.

(3) Let V ⊂ R2 denote the square given by |u| < 1 and |v| < 1, and define two Riemannian metrics on
V by

du2/(1− u2)2 + dv2/(1− v2)2, and du2/(1− v2)2 + dv2/(1− u2)2.

Prove that there is no isometry between the two spaces, but that an area-preserving diffeomorphism does
exist.

[Hint: to prove that an isometry does not exist, show that in one space there are curves of finite length
going out to the boundary, while in the other space no such curves exist.]

(4) Let l denote the hyperbolic line in H given by a semicircle with centre a ∈ R and radius r > 0.
Show that the reflection Rl is given by the formula

Rl(z) = a +
r2

z − a
.

(5) If a is a point in the upper half-plane, show that the Möbius transformation g given by

g(z) =
z − a

z − a

defines an isometry from the upper half-plane model H to the disc model D of the hyperbolic plane, sending
a to zero. Deduce that for points z1, z2 in the upper half-plane, the hyperbolic distance is given by ρ(z1, z2) =
2 tanh−1 |(z1 − z2)/(z1 − z2)|.

(6) Let z1, z2 be distinct points in the upper half-plane. Suppose that the hyperbolic line through z1

and z2 meets the real axis at points z∗1 and z∗2 , where z1 lies on the hyperbolic line segment z∗1z2, and where
one of z∗1 , z∗2 might be ∞. Show that the hyperbolic distance ρ(z1, z2) is equal to | log r|, where r is the
cross-ratio of the four points z∗1 , z1, z2, z

∗
2 , taken in an appropriate order.

(7) Let C denote a hyperbolic circle of hyperbolic radius ρ in the upper half-plane model of the hyperbolic
plane; show that C is also a Euclidean circle. If C has hyperbolic centre ic, find the radius and centre of C
regarded as a Euclidean circle. Show that a hyperbolic circle of hyperbolic radius ρ has hyperbolic area

2π(cosh(ρ)− 1).
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Describe how this function behaves for ρ large; compare the behavior of the corresponding area functions in
Euclidean and spherical geometry.

(8) Given two points P and Q in the hyperbolic plane, show that the locus of points equidistant from
P and Q is a hyperbolic line, the perpendicular bisector of the hyperbolic line segment from P to Q.

(9) Show that any isometry g of the disc model D for the hyperbolic plane is either of the form (for
some a ∈ D and 0 ≤ θ < 2π):

g(z) = eiθ z − a

1− az
,

or of the form
g(z) = eiθ z − a

1− a z
.

(10) Prove that a convex hyperbolic n-gon with interior angles α1, . . . , αn has area

(n− 2)π −
∑

αi.

Show that for every n ≥ 3 and every α with 0 < α < (1− 2
n )π, there is a regular n-gon all of whose angles

are α.

(11) Show that two hyperbolic lines have a common perpendicular if and only if they are ultraparallel,
and that in this case the perpendicular is unique. Given two ultraparallel hyperbolic lines, prove that the
composite of the corresponding reflections has infinite order. [Hint: You may wish to take the common
perpendicular as a special line.]

(12) Let M be the hyperboloid model of the hyperbolic plane. That is, consider the Lorentzian inner
product 〈〈x, y〉〉 = x1y1 + x2y2 − x3y3 on R3, and let M = {x ∈ R3 : 〈〈x, x〉〉 = −1, x3 > 0} with the
Riemannian metric restricted from 〈〈x, y〉〉. Show that every plane P in R3 through 0 that meets M can be
written as {x ∈ R3 : 〈〈x, u〉〉 = 0} for some vector u ∈ R3 with 〈〈u, u〉〉 = 1. Use this to write a formula for
the reflection of M in the hyperbolic line M ∩ P . Show that every hyperbolic line in M arises this way.

———————————————————————————————————–

(13) Fix a point P on the boundary of D, the disc model of the hyperbolic plane. Determine which
curves in D are orthogonal to every hyperbolic line that passes through P .

(14) Given two hyperbolic lines meeting at a point, show that the locus of points equidistant from the
two lines forms two further hyperbolic lines through the point. Show that in a hyperbolic triangle, none of
whose vertices are at infinity, the angle bisectors are concurrent.

(15) Let l be a hyperbolic line and P a point on l. Show that there is a unique hyperbolic line l′ through
P making an angle α with l (in a given sense). If α, β are positive numbers with α + β < π, show that there
exists a hyperbolic triangle (one vertex at infinity) with angles 0, α, β. For any positive numbers α, β, γ with
α + β + γ < π, show that there exists a hyperbolic triangle with these angles. [Hint: For the last part, it
seems natural to use a continuity argument.]

(16) For arbitrary points z, w in C, prove the identity

|1− zw|2 = |z − w|2 + (1− |z|2)(1− |w|2).

Given points z, w in the unit disc model of the hyperbolic plane, prove the identity

sinh2(
1
2
ρ(z, w)) =

|z − w|2

(1− |z|2)(1− |w|2)
,

where ρ denotes the hyperbolic distance.

Note to the reader: You should look at all the questions up to Question 12, and then any further
questions you have time for.
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